Advertisement

Disorders of neuromuscular junction ion channels1

  • Kanokwan Boonyapisit
    Affiliations
    Department of Neurology (KB, HJK, RLR), Case Western Reserve University School of Medicine, Department of Veterans Affairs Medical Center in Cleveland, University Hospitals of Cleveland, Cleveland, Ohio, USA
    Search for articles by this author
  • Henry J Kaminski
    Correspondence
    Requests for reprints should be addressed to Henry J. Kaminski, MD, Department of Neurology, University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106
    Affiliations
    Department of Neurology (KB, HJK, RLR), Case Western Reserve University School of Medicine, Department of Veterans Affairs Medical Center in Cleveland, University Hospitals of Cleveland, Cleveland, Ohio, USA

    Department of Neurosciences (HJK, RLR), Case Western Reserve University School of Medicine, Department of Veterans Affairs Medical Center in Cleveland, University Hospitals of Cleveland, Cleveland, Ohio, USA
    Search for articles by this author
  • Robert L Ruff
    Affiliations
    Department of Neurology (KB, HJK, RLR), Case Western Reserve University School of Medicine, Department of Veterans Affairs Medical Center in Cleveland, University Hospitals of Cleveland, Cleveland, Ohio, USA

    Department of Neurosciences (HJK, RLR), Case Western Reserve University School of Medicine, Department of Veterans Affairs Medical Center in Cleveland, University Hospitals of Cleveland, Cleveland, Ohio, USA
    Search for articles by this author

      Abstract

      Ion channel defects produce a clinically diverse set of disorders that range from cystic fibrosis and some forms of migraine to renal tubular defects and episodic ataxias. This review discusses diseases related to impaired function of the skeletal muscle acetylcholine receptor and calcium channels of the motor nerve terminal. Myasthenia gravis is an autoimmune disease caused by antibodies directed toward the skeletal muscle acetylcholine receptor that compromise neuromuscular transmission. Congenital myasthenias are genetic disorders, a subset of which are caused by mutations of the acetylcholine receptor. Lambert-Eaton myasthenic syndrome is an immune disorder characterized by impaired synaptic vesicle release likely related to a defect of calcium influx. The disorders will illustrate new insights into synaptic transmission and ion channel structure that are relevant for all ion channel disorders.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kaminski H.J
        • Ruff R.L
        The myasthenic syndromes.
        in: Schultz S.G Andreoli T.E Brown A Molecular Biology of Membrane Transport Disorders. Plenum Publishing, New York1996: 565-594
        • Kaminski H.J
        • Ruff R.L
        Congenital disorders of neuromuscular transmission.
        Hosp Prac. 1992; 39: 73-86
        • Engel A
        Myasthenic syndromes.
        in: Engel A Franzini-Armstrong C Myology. McGraw-Hill, New York1994: 1798-1835
        • Black J.A
        • Kocsis J.D
        • Waxman S.G
        Ion channel organization of the myelinated fiber.
        Trends Neurosci. 1990; 13: 48-54
        • Salpeter M.M
        The Vertebrate Neuromuscular Junction. Alan R. Liss, New York1987
        • Augustine G.J
        • Adler E.M
        • Charlton M.P
        The calcium signal for transmitter secretion from presynaptic nerve terminals.
        Ann NY Acad Sci. 1991; 635: 365-381
        • Smith S.J
        • Augustine G.J
        Calcium ions, active zones and synaptic transmitter release.
        Trends Neurosci. 1988; 10: 458-464
        • Gautam M
        • Noakes P.G
        • Mudd J
        • et al.
        Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice.
        Nature. 1995; 377: 232-236
        • Flucher B.E
        • Daniels M.P
        Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kD protein.
        Neuron. 1989; 3: 163-175
        • Sanes J.R
        • Johnson Y.R
        • Kotzbauer P.T
        • et al.
        Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers.
        Development. 1991; 113: 1181-1191
        • Martinou J.C
        • Falls D.I
        • Fischback G.D
        • Merlie J.P
        Acetylcholine receptor-inducing activity stimulates expression of the epsilon-subunit gene of the muscle acetylcholine receptor.
        Proc Natl Acad Sci USA. 1991; 88: 7669-7673
        • Merlie J.P
        • Sanes J.R
        Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibers.
        Nature. 1985; 317: 66-68
        • Land B.R
        • Salpeter E.E
        • Salpeter M.M
        Kinectic parameters for acetylcholine interaction in intact neuromuscular junction.
        Proc Natl Acad Sci USA. 1981; 78: 7200-7204
        • Kuffler S.W
        • Yoshikami D
        The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles.
        J Physiol (Lond). 1975; 244: 703-730
        • Haimovich B
        • Schotland D.L
        • Fieles W.E
        • Barchi R.L
        Localization of sodium channel subtypes in rat skeletal muscle using channel-specific monoclonal antibodies.
        J Neurosci. 1987; 7: 2957-2966
        • Ruff R.L
        • Whittlesey D
        Na+ current densities and voltage dependence in human intercostal muscle fibres.
        J Physiol (Lond). 1992; 458: 85-97
        • Colquhoun D
        • Sakmann B
        Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate.
        J Physiol (Lond). 1985; 369: 501-557
        • Gee S.H
        • Montanaro F
        • Lindenbaum M.H
        • Carbonetto S
        Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor.
        Cell. 1994; 77: 675-686
        • Campanelli J.T
        • Roberds S.L
        • Cambell K.P
        • Scheller R.H
        A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering.
        Cell. 1994; 77: 663-674
        • Sealock R
        • Froehner S.C
        Dystrophin-associated proteins and synapse formation.
        Cell. 1994; 77: 617-619
        • Brenman J.E
        • Chao D.S
        • Gee S.H
        • et al.
        Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains.
        Cell. 1996; 84: 757-767
        • Kusner L.L
        • Kaminski H.J
        Nitric oxide synthase is concentrated at the skeletal muscle endplate.
        Brain Res. 1996; 730: 238-242
        • Hall Z.W
        • Sanes J.R
        Synaptic structure and development.
        Cell. 1993; 72: 99-121
        • Kleiman R.J
        • Reichardt L.F
        Testing the agrin hypothesis.
        Cell. 1996; 85: 461-464
        • Gautam M
        • Noakes P.G
        • Moscoso L
        • et al.
        Defective neuromuscular synaptogenesis in agrin-deficient mutant mice.
        Cell. 1996; 85: 525-535
        • Cherksey B.D
        • Sugimori M
        • Llinas R.R
        Properties of calcium channels isolated with spider toxin, FTX.
        Ann NY Acad Sci. 1991; 635: 80-89
        • Nowycky M.C
        • Fox A.P
        • Tsien R.W
        Three types of neuronal calcium channel with calcium agonist sensitivity.
        Nature. 1985; 316: 440-443
        • Nowycky M.C
        Two high-threshold Ca2+ channels contribute Ca2+ for depolarization-secretion coupling in the mammalian neuropophysis.
        Ann NY Acad Sci. 1991; 635: 45-57
        • Llinas R.R
        Depolarization release coupling.
        Ann NY Acad Sci. 1991; 635: 3-17
        • Stanley E.F
        Presynaptic calcium channels and the transmitter release mechanism.
        Ann NY Acad Sci. 1993; 681: 368-372
        • Lindgren C.A
        • Moore J.W
        Calcium current in motor nerve endings of the lizard.
        Ann NY Acad Sci. 1991; 635: 58-69
        • Miledi R
        • Molenaar P.C
        • Polak R.L
        Electrophysiological and chemical determination of acetylcholine release at the frog neuromuscular junction.
        J Physiol (Lond). 1983; 334: 245-254
        • Etcheberrigaray R
        • Fielder J.L
        • Pollard H.B
        • Rojas E
        Endoplasmic reticulum as a source of Ca2+ in neurotransmitter secretion.
        Ann NY Acad Sci. 1991; 635: 90-99
        • Land B.R
        • Harris W.V
        • Salpeter E.E
        • Salpeter M.M
        Diffusion and binding constants for acetylcholine derived from the falling phase of miniature endplate currents.
        Proc Natl Acad Sci USA. 1984; 81: 1594-1598
        • McMahan U.J
        • Sanes J.R
        • Marshall L.M
        Cholinesterase is associated with the basal lamina at the neuromuscular junction.
        Nature. 1978; 271: 172-174
        • Hall Z.W
        The nerve terminal.
        in: Hall Z.W An Introduction to Molecular Neurobiology. Sinauer Associates, Sunderland, MA1992: 148-180
        • Kaminski H.J
        • Ruff R.L
        Insights into possible skeletal muscle nicotinic acetylcholine receptor (AChR) changes in some congenital myasthenias from physiological studies, point mutations, subunit substitutions of the AChR.
        Ann NY Acad Sci. 1993; 681: 435-450
        • Guy H.R
        • Hucho F
        The ion channel of nicotinic acetylcholine receptor.
        Trends Neurosci. 1987; 10: 318-322
        • Chavez R.A
        • Hall Z.W
        Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the α and δ subunits.
        J Cell Biol. 1992; 116: 385-393
        • Toyoshima C
        • Unwin N
        Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes.
        Nature. 1988; 336: 247-250
        • Unwin N
        • Toyoshima C
        • Kubalek E
        Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized torpedo postsynaptic membranes.
        J Cell Biol. 1988; 107: 1123-1138
        • Henderson L.P
        • Brehm P
        The single-channel basis for the slow kinetics of synaptic currents in vertebrate slow muscle fibers.
        Neuron. 1989; 2: 1399-1405
        • Brehm P
        • Henderson L
        Regulation of acetylcholine receptor channel function during development of skeletal muscle.
        Dev Biol. 1988; 129: 1-11
        • Brehm P
        Resolving the structural basis for developmental changes in muscle ACh receptor function.
        Trends Neurosci. 1989; 12: 174-177
        • Qu Z
        • Moritz E
        • Huganir R.L
        Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction.
        Neuron. 1990; 2: 367-378
        • Safran A
        • Provenzano C
        • Sagi-Eisenberg R
        • Fuchs S
        Phosphorylation of membrane-bound acetylcholine receptor by protein kinase C.
        Biochem. 1990; 29: 6730-6734
        • Rozental R
        In vitro denervation of frog skeletal muscle.
        Neurosci Lett. 1991; 133: 65-67
        • Dionne V.E
        Two types of nicotinic acetylcholine receptor channels at slow fibre end-plates of the garter snake.
        J Physiol. 1989; 409: 313-331
        • Ruff R.L
        • Spiegel P
        Ca sensitivity and AChR currents of twitch and tonic snake muscle fibers.
        Am J Physiol. 1990; 259: C911-C919
        • Kaminski H.J
        • Kusner L.L
        • Block C.H
        Expression of acetylcholine receptor isoforms at extraocular muscle endplates.
        Invest Ophthalmol Vis Sci. 1996; 37: 345-351
        • Kaminski H.J
        • Kusner L.L
        • Nash K.V
        • Ruff R.L
        The γ-subunit of the acetylcholine receptor is not expressed in the levator palpebrae superioris.
        Neurology. 1995; 45: 516-518
        • Horton R.M
        • Manfredi A.A
        • Conti-Tronconi BM
        The “embryonic” gamma subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle.
        Neurology. 1993; 43: 983-986
        • Dwyer T.M
        • Adams D.J
        • Hille B
        The permeability of the endplate channel to organic cations in frog muscle.
        J Gen Physiol. 1980; 75: 469-492
        • Dani J.A
        • Eisenman G
        Monovalent and divalent cation permeation in acetylcholine receptors channel.
        J Gen Physiol. 1987; 89: 959-983
        • Ruff R.L
        Ionic channels I. The biophysical basis for ion passage and channel gating.
        Muscle Nerve. 1986; 9: 675-699
        • Karlin A
        • Kao P.N
        • DiPaola M
        Molecular pharmacology of the nicotinic acetylcholine receptor.
        Trends Pharmacol. 1986; 4: 304-308
        • Ruff R.L
        Ionic channels II. Voltage- and agonist-gated and agonist-modified channel properties and structure.
        Muscle Nerve. 1986; 9: 767-786
        • Dani J.A
        Site-directed mutagenesis and single-channel currents define the ionic channel of the nicotinic acetylcholine receptor.
        Trends Neurosci. 1989; 12: 125-130
        • Sigworth F.J
        • Sine S.M
        Data transformations for improved display and fitting of single-channel dwell time histograms.
        Biophys J. 1987; 52: 1047-1054
        • Sine S.M
        • Steinbach J.H
        Activation of a nicotinic acetylcholine receptor.
        Biophys J. 1984; 45: 175-185
        • Auerbach A.B
        • Sachs F
        Single channel currents from acetylcholine receptors in embryonic chick muscle. Kinetic and conductance properties of gaps within bursts.
        Biophys J. 1984; 45: 187-198
        • McLaughlin J
        • Hawrot E
        • Yellen G
        Covalent modification of engineered cysteines in the nicotinic acetylcholine receptor agonist-binding domain inhibits receptor activation.
        Biochem J. 1995; 310: 765-769
        • Neumann D
        • Barchan D
        • Horowitz M
        • Kochva E
        • Fuchs S
        Snake acetylcholine receptor.
        Proc Natl Acad Sci USA. 1989; 86: 7255-7259
        • Giraudat J
        • Dennis M
        • Heidmann T
        • Chang J.-Y
        • Changeux J.-P
        Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor.
        Proc Natl Acad Sci USA. 1986; 83: 2719-2723
        • Hucho F
        • Oberthür W
        • Lottspeich F
        The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits.
        FEBS Lett. 1986; 205: 137-142
        • Leonard R.J
        • Labarca C.G
        • Charnet P
        • Davidson N
        • Lester H.A
        Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor.
        Science. 1988; 242: 1578-1581
        • Akabas M.H
        • Stauffer D.A
        • Xu M
        • Karlin A
        Acetylcholine receptor channel structure probed in cysteine-substitution mutants.
        Science. 1992; 258: 307-310
        • Akabas M.H
        • Karlin A
        Identification of acetylcholine receptor channel-lining residues in the M1 segment of the α-subunit.
        Biochem. 1995; 34: 12496-12500
        • Karlin A
        • Akabas M.H
        Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins.
        Neuron. 1995; 15: 1231-1244
        • Imoto K
        • Methfessel C
        • Sakmann B
        • et al.
        Location of a δ subunit region determining ion transport through the acetylcholine receptor channel.
        Nature. 1986; 324: 670-674
        • Imoto K
        • Busch C
        • Sakmann b
        • et al.
        Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance.
        Nature. 1988; 305: 645-648
        • Murray N
        • Zheng Y.-C
        • Mandel G
        • et al.
        A single site on the ε subunit is responsible for the change in ACh receptor channel conductance during skeletal muscle development.
        Neuron. 1995; 14: 865-870
        • Herlitze S
        • Villarroel A
        • Witzemann V
        • Koenen M
        • Sakmann B
        Structural determinants of channel conductance in fetal and adult rat muscle acetylcholine receptors.
        J Physiol (Lond). 1996; 492: 775-787
        • Unwin N
        Acetylcholine receptor channel imaged in the open state.
        Nature. 1995; 373: 37-43
        • Unwin N
        Nicotinic acetylcholine receptor at 9 Å resolution.
        J Mol Biol. 1993; 229: 1101-1124
        • Bouzat C
        • Bren N
        • Sine S.M
        Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors.
        Neuron. 1994; 13: 1395-1402
        • Lindstrom J.M
        • Seybold M.D
        • Lennon V.A
        • Whittingham S
        • Duane D.D
        Antibody to acetylcholine receptor in myasthenia gravis.
        Neurology. 1976; 26: 1054-1059
        • Drachman D.B
        Myasthenia gravis.
        NEJM. 1994; 330: 1797-1810
        • Karlin A
        Explorations of the nicotinic acetylcholine receptor.
        Harvey Lect Ser. 1991; 85: 71-107
        • Beroukhim R
        • Unwin N
        Three-dimensional location of the main immunogenic region of the acetylcholine receptor.
        Neuron. 1995; 15: 323-331
        • Banker B.Q
        • Kelly S.S
        • Robbins N
        Neuromuscular transmission and correlative morphology in young and old mice.
        J Physiol (Lond). 1983; 339: 355-375
        • Kaminski H
        Acetylcholine receptor epitopes in ocular myasthenia.
        Ann NY Acad Sci. 1998; 841: 309-319
        • Grob D
        • Arsura E.L
        • Brunner N.G
        • Namba T
        The course of myasthenia gravis and therapies affecting outcome.
        Ann NY Acad Sci. 1987; 505: 472-499
        • Daroff R.B
        The office tensilon test for ocular myasthenia gravis.
        Arch Neurol. 1986; 43: 843-844
        • Oh S.J
        • Cho H.K
        Edrophonium responsiveness not necessarily diagnostic of myasthenia gravis.
        Muscle Nerve. 1990; 13: 187-191
        • Oh S.J
        • Kim D.E
        • Kuruoglu R
        • Bradley R.J
        • Dwyer D
        Diagnostic sensitivity of the laboratory tests in myasthenia gravis.
        Muscle Nerve. 1992; 15: 720-724
        • MacLennan C
        • Beeson D
        • Buijs A.-M
        • Vincent A
        • Newsom-Davis J
        Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis.
        Ann Neurol. 1997; 41: 423-431
        • Mygland A
        • Aarli J
        • Matre R
        • Gilhus N
        Ryanodine receptor antibodies related to severity of thymoma associated myasthenia gravis.
        J Neurol Neurosurg Psychiatr. 1994; 57: 843-846
        • Mossman S
        • Vincent A
        • Newsom-Davis J
        Myasthenia gravis without acetylcholine receptor antibody.
        Lancet. 1986; i: 116-119
        • Beghi E
        • Antozzi C
        • Batocchi A.P
        • et al.
        Prognosis of myasthenia gravis.
        J Neurol Sci. 1991; 106: 213-220
        • Rowland L.P
        Controversies about the treatment of myasthenia gravis.
        J Neurol Neurosurg Psychiatr. 1980; 43: 644-659
        • Olanow C.W
        • Wechsler A.S
        • Sirotkin-Roses M
        • Stajich J
        • Roses A.D
        Thymectomy as primary therapy in myasthenia gravis.
        Ann NY Acad Sci. 1987; 505: 595-606
        • Patrick J
        • Lindstrom J
        Autoimmune response to acetylcholine receptor.
        Science. 1973; 180: 871-872
        • Lindstrom J.M
        • Einarson B.L
        • Lennon V.A
        • Seybold M.E
        Pathological mechanisms in experimental autoimmune myasthenia gravis. I. Immunogenicity of syngeneic muscle acetylcholine receptor and quantitative extraction of receptor and anti-receptor complexes from muscle of rats with experimental autoimmune myasthenia gravis.
        J Exp Med. 1976; 144: 726-738
        • Toyka K.V
        • Drachman D.B
        • Griffin D.E
        • Pestronk D
        Myasthenia gravis study of humoral immune mechanisms by transfer to mice.
        NEJM. 1977; 296: 125-131
        • Engel A.G
        • Lambert E.H
        • Howard F.M
        Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis. Ultrastructure and light microscopic localization and electrophysiological correlations.
        Mayo Clin Proc. 1977; 52: 267-280
        • Engel A.G
        The molecular biology of end-plate diseases.
        in: Salpeter M.M The Vertebrate Neuromuscular Junction. vol 23. Alan R. Liss, New York1987: 361-424
        • Engel A.G
        • Fumagalli G
        Mechanisms of acetylcholine receptor loss from the neuromuscular junction.
        Ciba Found Symp. 1982; 90: 197-224
        • Schönbeck S
        • Chrestel S
        • Hollfeld R
        Myasthenia gravis.
        Int Rev Neurobiol. 1990; 32: 175-200
        • Vincent A
        Disorders affecting the acetylcholine receptor.
        J Recept Res. 1987; 7: 599-616
        • Mihovilovic M
        • Donnelly-Roberts D
        • Richman D
        • Martinez-Carrion M
        Pathogenesis of hyperacute experimental autoimmune myasthenia gravis.
        J Immunol. 1994; 152: 5997-6002
        • Tzartos S
        • Seybold M
        • Lindstrom J
        Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies.
        Proc Natl Acad Sci. 1982; 1982: 188-192
        • Ruff R.L
        • Lennon V.A
        Endplate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis.
        Ann Neurol. 1998; 43: 370-379
        • Kaminski H
        • Suarez J
        • Ruff R
        Neuromuscular junction physiology in myasthenia gravis.
        Neurology. 1997; 48: 8-17
        • Ruff R.L
        Electrophysiology of postsynaptic activation.
        Ann NY Acad Sci. 1998; 841: 57-70
        • Richardson R.F
        • Ruff R.L
        Anti-AchR antibodies in passively transferred autoimmune myasthenia gravis reduce endplate sodium currents by decreasing the density of endplate sodium channels, not by blocking sodium channels.
        Neurology. 1998; 50: A433
        • Molenaar P.C
        Synaptic adaptation in diseases of the neuromuscular junction.
        Prog Brain Res. 1990; 84: 145-149
        • Asher O
        • Neumann D
        • Witzemann V
        • Fuchs S
        Acetylcholine receptor gene expression in experimental autoimmune myasthenia gravis.
        FEBS Lett. 1990; 261: 231-235
        • Kusner L
        • Mygland A
        • Kaminski H
        Ryanodine receptor gene expression in thymus and thymomas.
        Muscle Nerve. 1998; 21: 1299-1303
        • Smiley J.D
        • Moore Jr, S.E
        Molecular mechanisms of autoimmunity.
        Am J Med Sci. 1988; 295: 478-496
        • Ruff R.L
        • Whittlesey D
        Na+ currents near and away from endplates on human fast and slow twitch muscle fibers.
        Muscle Nerve. 1993; 16: 922-929
        • Missias A.C
        • Chu G.C
        • Klocke B.J
        • Sanes J.R
        • Merlie J.P
        Regulation of the acetylcholine receptor gamma subunit gene in developing skeletal muscle.
        Dev Biol. 1996; 179: 223
        • Kaminski H
        • Ruff R
        Ocular muscle involvement by myasthenia gravis.
        Ann Neurol. 1997; 41: 419-420
        • Compston D.A.S
        • Vincent A
        • Newsom-Davis J
        • Batchelor J.R
        Clinical, pathological, HLA antigen, and immunological evidence for disease heterogeneity in myasthenia gravis.
        Brain J. 1980; 103: 579-601
        • Vincent A
        • Newsom-Davis J
        Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles.
        Clin Exp Immunol. 1982; 49: 257-265
        • Protti M.P
        • Manfredi A.A
        • Howard J.F
        • Conti-Tronconi B.M
        T cells in myastheni gravis specific for embryonic acetylcholine receptor.
        Neurology. 1991; 41: 1809-1814
        • Yuen M
        • Macklin K
        • Conti-Fine B
        MHC class II presentation of human acetylcholine receptor in myasthenia gravis.
        J Autoimmunol. 1996; 9: 67-77
        • Gardnerova M
        • Eymard B
        • Morel E
        • et al.
        The fetal/adult acetylcholine receptor antibody ratio in mothers with myasthenia gravis as a marker for transfer of the disease to the newborn.
        Neurology. 1997; 48: 50-54
        • Vincent A
        • Newland C
        • Brueton L
        • et al.
        Arthrogryposis multiplex congenita with maternal autoantibodies specific for the fetal antigen.
        Lancet. 1995; 346: 24-25
        • Vincent A
        • Newland C
        • Croxen R
        • Beeson D
        Genes at the junction—candidates for congenital myasthenic syndrome.
        Trends Neurosci. 1997; 20: 15-22
        • Morel E
        • Eymard B
        • Vernet-der Garabedian B
        • Pannier C
        • Dulac O
        • Bach J.F
        Neonatal myasthenia gravis.
        Neurology. 1988; 38: 138-142
        • Oosterhuis H.J.G.H
        • Newsom-Davis J
        • Wokke J.H.J
        • et al.
        The slow channel syndrome. Two new cases.
        Brain. 1987; 110: 1061-1079
        • Engel A.G
        • Lambert E.H
        • Mulder D.M
        • et al.
        A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel.
        Ann Neurol. 1982; 11: 553-569
        • Croxen R
        • Newland C
        • Beeson D
        • et al.
        Mutations in different functional domains of the human muscle acetylcholine receptor α subunit in patients with the slow channel syndrome congenital myasthenic syndrome.
        Hum Mol Genet. 1997; 6: 767-774
        • Gomez C
        • Maselli R
        • Gammack J
        • et al.
        A β-subunit mutation in the acetylcholine receptor genes reveal heterogeneity in the slow channel congenital myasthenic syndrome.
        Ann Neurol. 1996; 39: 1217-1227
        • Ohno K
        • Hutchinson D
        • Milone M
        • et al.
        Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit.
        Proc Natl Acad Sci. 1995; 92: 758-762
        • Engel A.G
        • Uchitel O.D
        • Walls T.J
        • Nagel A
        • Harper C.M
        • Bodensteiner J
        Newly recognized congenital myasthenic syndrome associated with high conductance and fast closure of the acetylcholine receptor channel.
        Ann Neurol. 1993; 34: 38-47
        • Engel A.G
        • Nagel A
        • Walls T.J
        • Harper C.M
        • Waisburg H.A
        Congenital myasthenic syndromes: I. deficiency and short open-time of the acetylcholine receptor.
        Muscle Nerve. 1993; 16: 1284-1292
        • Engel A.G
        • Hutchinson D.O
        • Nakano S
        • et al.
        Myasthenic syndromes attributed to mutations affecting the epsilon subunit of the acetylcholine receptor.
        Ann NY Acad Sci. 1993; 681: 496-508
        • Gu Y
        • Camacho P
        • Gardner P
        • Hall Z.W
        Identification of two amino acid residues in the subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells.
        Neuron. 1991; 6: 879-887
        • Ohno K
        • Quiram P.A
        • Milone M
        • et al.
        Congenital myasthenic syndromes due to hereroallelic nonsense/missense mutations in the acetylcholine receptor ε subunit gene.
        Hum Mol Genet. 1997; 6: 754-766
        • Uchitel O
        • Engel A.G
        • Wals T.J
        • Nagel A
        • Atassi M.Z
        • Bril V
        Congenital myasthenic syndromes: II. syndrome attributed to abnormal interaction of acetylcholine with its receptor.
        Muscle Nerve. 1993; 16: 1293-1301
        • Changeux J.-P
        • Devillers-Thiery A
        • Galzi J.-L
        • Bertrand D
        New mutants to explore nicotinic receptor functions.
        Trends Pharmocol Sci. 1992; 13: 299-301
        • Morgan-Hughes J.A
        • Lecky B.R.F
        • Landon D.N
        • Murray N.M.F
        Alterations in the number and affinity of junctional acetylcholine receptors in a myopathy with tubular aggregates. A newly recognized receptor defect.
        Brain. 1981; 104: 279-295
        • O’Neill J.H
        • Murray N.M.F
        • Newsom-Davis J
        The Lambert-Eaton myasthenic syndrome. A review of 50 cases.
        Brain. 1988; 111: 577-596
        • Beydoun S.R
        Delayed diagnosis of Lambert-Eaton myasthenic syndrome in a patient presenting with recurrent refractory respiratory failure.
        Muscle Nerve. 1994; 17: 689-690
        • Barr C.W
        • Claussen G
        • Thomas D
        • Fesenmeier J.T
        • Pearlman R.L
        • Oh S.J
        Primary respiratory failure as the presenting symptom in Lambert-Eaton myasthenic syndrome.
        Muscle Nerve. 1993; 16: 712-715
        • Breen L
        • Gutman L
        • Brick J
        • Riggs J
        Paradoxical lid elevation with sustained upgaze.
        Muscle Nerve. 1991; 14: 863-866
        • Engel A.G
        Myasthenic syndromes.
        in: Engel A.G Banker B.Q Myology. McGraw-Hill, New York1986: 1955-1990
        • Sanders D.B
        Lambert-Eaton myasthenic syndrome.
        Ann Neurol. 1995; 37: S63-S73
        • Elmqvist D
        • Lambert E.H
        Detailed analysis of neuromuscular transmission in a patient with the myasthenic syndrome sometimes associated with bronchogenic carcinoma.
        Mayo Proc Clin. 1968; 43: 689-713
        • Lambert E.H
        • Lennon V.A
        Neuromuscular transmission in nude mice bearing oat-cell tumors from Lambert-Eaton myasthenic syndrome.
        Muscle Nerve. 1982; 5: S39-S45
        • Newsom-Davis J
        • Leys K
        • Vincent A
        • Ferguson I
        • Modi G
        • Mills K
        Immunological evidence for the co-existence of the Lambert-Eaton myasthenic syndrome and myasthenia gravis in two patients.
        J Neurol Neurosurg Psychiatr. 1991; 54: 452-453
        • Oguro-Okamoto M
        • Griesman G.E
        • Wieben E.D
        • Slaymaker S.J
        • Snutch T.P
        • Lennon V.A
        Molecular diversity of neuronal-type calcium channels identified in small cell lung carcinoma.
        Mayo Clin Proc. 1992; 67: 1150-1159
        • Trontelj J.V
        • Stalberg E
        Single motor endplates in myasthenia gravis and LEMS at different firing rates.
        Muscle Nerve. 1990; 14: 226-232
        • Cull-Candy S.G
        • Meledi R
        • Trautmann A
        • Uchitel O.D
        On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates.
        J Physiol. 1980; 299: 621-638
        • Lambert E.H
        • Elmqvist D
        Quantal components of end-plate potentials in the myasthenic syndrome.
        Ann NY Acad Sci. 1971; 183: 183-199
        • Streib E.W
        • Rothner A.D
        Eaton-Lambert myasthenic syndrome.
        Ann Neurol. 1981; 10: 448-453
        • Lang B
        • Newsom-Davis J
        • Wray D.W
        • Vincent A
        Autoimmune aetiology for myasthenic (Lambert-Eaton) syndrome.
        Lancet. 1981; ii: 224-226
        • Lennon V.A
        • Lambert E.H
        • Whittingham S
        • Fairbainks V
        Autoimmunity in the Lambert-Eaton myasthenic syndrome.
        Muscle Nerve. 1982; 5: S21-S25
        • Newsom-Davis J
        • Murray N.M.F
        Plasma exchange and immunosuppressive drug treatment in the Lambert-Eaton myasthenic syndrome.
        Neurology. 1984; 34: 480-485
        • Fukunaga H
        • Engel A.G
        • Osame M
        • Lambert E.H
        Paucity and disorganization of presynaptic membrane active zones in the Lambert-Eaton myasthenic syndrome.
        Muscle Nerve. 1982; 5: 686-697
        • Fukunaga H
        • Engel A.G
        • Lang B
        • Newsom-Davis B
        • Vincent A
        Passive transfer of Lambert-Eaton myasthenic syndrome IgG from man to mouse depletes the presynaptic membrane active zones.
        Proc Natl Acad Sci USA. 1983; 80: 7636-7640
        • Engel A.G
        Review of evidence for loss of motor nerve terminal calcium channels in Lambert-Eaton myasthenic syndrome.
        Ann NY Acad Sci. 1991; 635: 246-258
        • Fukuoka T
        • Engel A.G
        • Lang B
        • Newsom-Davis J
        • Prior C
        • Wray D.W
        Lambert-Eaton myasthenic syndrome: I. early morphologic effects of IgG on the presynaptic membrane active zones.
        Ann Neurol. 1987; 22: 193-199
        • Fukuoka T
        • Engel A.G
        • Lang B
        • Newsom-Davis J
        • Vincent A
        Lambert-Eaton myasthenic syndrome: II. immunoelectron microscopy localization of IgG at the mouse motor end-plate.
        Ann Neurol. 1987; 22: 200-211
        • Nagel A
        • Engel A.G
        • Lang B
        • Newsom-Davis J
        • Fukuoka T
        Lambert-Eaton syndrome IgG depletes presynaptic membrane active zone particles by antigenic modulation.
        Ann Neurol. 1988; 24: 552-558
        • Lang B
        • Vincent A
        • Murray N.M.F
        • Newsom-Davis J
        Lambert-Eaton myasthenic syndrome.
        Ann Neurol. 1989; 25: 265-271
        • Kim Y.I
        • Neher E
        IgG from patients with Lambert-Eaton syndrome blocks voltage-dependent calcium channels.
        Science. 1988; 239: 405-408
        • Peers C
        • Lang B
        • Newsom-Davis J
        • Wray D.W
        Selective action of Lambert-Eaton myasthenic syndrome antibodies on calcium channels in a rodent neuroblastoma x glioma hybrid cell line.
        J Physiol (Lond). 1987; 421: 293-308
        • Lang B
        • Johnston I
        • Leys K
        • et al.
        Autoantibody specificities in Lambert-Eaton myasthenic syndrome.
        Ann NY Acad Sci. 1993; 681: 382-391
        • Lennon V.A
        • Lambert E.H
        Antibodies bind solubilized calcium channel-omega-conotoxin complexes from small cell lung carcinoma.
        Mayo Clin Proc. 1989; 64: 1498-1504
        • Leys K
        • Lang B
        • Johnston I
        • Newsom-Davis J
        Calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome.
        Ann Neurol. 1991; 29: 307-414
        • Sher E
        • Gotti C
        • Canal N
        • et al.
        Specificity of calcium channel autoantibodies in Lambert-Eaton myasthenic syndrome.
        Lancet. 1989; ii: 640-643
        • Blandino J.K.W
        • Kim Y.I
        Lambert-Eaton syndrome IgG inhibits dihydropyridine-sensitive, slowly inactivating calcium channels in bovine adrenal chromaffin cells.
        Ann NY Acad Sci. 1993; 681: 394-397
        • Viglione M.P
        • Blandino J.K.W
        • Kim Y.I
        Effects of Lambert-Eaton syndrome serum and IgG on calcium and sodium currents in small-cell lung cancer cells.
        Ann NY Acad Sci. 1993; 681: 418-421
        • Protti D.A
        • Sanchez V.A
        • Cherksey B.D
        • Sugimori M
        • Llinas R.R
        • Uchitel O.D
        Mammalian neuromuscular transmission blocked by funnel web toxin.
        Ann NY Acad Sci. 1993; 681: 405-407
        • Motomura M
        • Johnston I
        • Lang B
        • Vincent A
        • Newsom-Davis J
        An improved diagnostic assay for Lambert-Eaton myasthenic syndrome.
        J Neurol Neurosurg Psychiatr. 1995; 58: 85-87
        • Johnston I
        • Lang B
        • Leys K
        • Newsom-Davis J
        Heterogeneity of calcium channels autoantibodies detected using a small cell lung cancer line from a Lambert-Eaton myasthenic syndrome patient.
        Neurology. 1994; 44: 34-38
        • Lennon V.A
        • Kryzer T.J
        • Griesmann G.E
        • et al.
        Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes.
        NEJM. 1995; 332: 1467-1474
        • Rosenfeld M.R
        • Wong E
        • Dalmau J
        • et al.
        Sera from patients with Lambert-Eaton myasthenic syndrome recognize the β-subunit of Ca2+ channel complexes.
        Ann NY Acad Sci. 1993; 681: 408-411
        • Leveque C
        • Hoshino T
        • David P
        • et al.
        The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen.
        Proc Natl Acad Sci USA. 1992; 89: 3625-3629
        • Hajela R.K
        • Atchison W.D
        The proteins synaptotagmin and syntaxin are not general targets of Lambert-Eaton myasthenic syndrome autoantibody.
        J Neurochem. 1995; 64: 1245-1251
        • Takamori M
        • Hamada T
        • Komai K
        • Takahashi M
        • Yoshida A
        Synaptotagmin can cause an immune-mediated model of Lambert-Eaton myasthenic syndrome in rats.
        Ann Neurol. 1994; 35: 74-80
        • Chalk C.H
        • Murray N.M.F
        • Newsom-Davis J
        • O’Neill J.H
        • Spiro S.G
        Response of the Lambert-Eaton myasthenic syndrome to treatment of associated small-cell lung carcinoma.
        Neurology. 1990; 40: 1552-1556
        • Lambert E.H
        • Rooke E.D
        • Eaton L.M
        • Hodgson C.H
        Myasthenic syndrome occasionally associated with bronchial neoplasm.
        in: Viets H.R Myathenia Gravis. Charles C. Thomas, Springfield1961: 362-410
        • Otsuka M
        • Endo M
        The effect of guanidine on neuromuscular transmission.
        J Pharmacol Exp Ther. 1960; 128: 273-282
        • Cherington M
        Guanidine and germaine in Lambert-Eaton syndrome.
        Neurology. 1976; 26: 944-946
        • Saint D.A
        The effects of 4-aminopyridine and tetraethylammonium on the kinetics of transmitter release at the mammalian neuromuscular synapse.
        Can J Physiol Pharmacol. 1989; 67: 1045-1050
        • Sanders D.B
        • Howard Jr, J.F
        • Massey J.M
        3,4-Diaminopyridine in Lambert-Eaton myasthenic syndrome and myasthenia gravis.
        Ann NY Acad Sci. 1993; 681: 588-590