Advertisement

Cardiovascular risk continuum: implications of insulin resistance and diabetes

  • Willa A. Hsueh
    Correspondence
    Requests for reprints should be addressed to Willa A. Hsueh, MD, 900 Veteran Avenue, Warren Hall, Suite 24-130, Box 957073, Los Angeles, California 90095-7073
    Affiliations
    Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California/Los Angeles, School of Medicine, Los Angeles, California, USA
    Search for articles by this author
  • Ronald E. Law
    Affiliations
    Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California/Los Angeles, School of Medicine, Los Angeles, California, USA
    Search for articles by this author

      Abstract

      Although low-density lipoprotein (LDL) cholesterol is a critically important factor in the development of atherosclerosis, nearly half the patients with coronary artery disease have LDL cholesterol levels within the National Cholesterol Education Program (NCEP) guidelines. Therefore, attention has focused on other modifiable risk factors that could strongly impact the development of coronary artery disease. Type 2 diabetics have a 3-fold increased risk of coronary artery disease; prediabetics, without chronic hyperglycemia, have a 2-fold increased risk compared with normal subjects. Insulin resistance has also been implicated as the cause of atherosclerosis. Insulin resistance is associated with hyperinsulinemia and a constellation of other factors, some of which are themselves independent risk factors for coronary artery disease. These include reduced levels of high-density lipoprotein (HDL) cholesterol, hypertriglyceridemia, increased small dense LDL particles, hypertension, visceral obesity, and increased levels of plasminogen activator inhibitor-1 (PAI-1). Hyperinsulinemia and insulin resistance at the vascular level also may contribute to vascular injury and the atherosclerotic process. Current studies suggest that controlling hyperglycemia, LDL cholesterol, and blood pressure are important to protect the diabetic from atherosclerosis. A key question, particularly in type 2 diabetes, is to define the best regimen for glucose control that will protect the vasculature. Sulfonylureas, metformin, and troglitazone have direct vascular actions. Metformin lowers LDL cholesterol and triglycerides, while troglitazone reverses many of the components associated with the insulin resistance syndrome. Clinical trials focusing on coronary artery disease outcomes are now warranted to prevent coronary artery disease, the major vascular complication and cause of mortality in diabetes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shieh S.-M.
        • Fuh M.M.-T.
        • Shen D.-C.
        • et al.
        Coronary artery disease in Chinese males without hypercholesterolaemia.
        J Intern Med. 1990; 228: 471-475
        • Garg A.
        • Helderman J.H.
        • Koffler M.
        • et al.
        Relationship between lipoprotein levels and in vivo insulin action in normal young white men.
        Metabolism. 1988; 37: 982-987
        • Slyper A.H.
        • Zvereva S.
        • Schectman G.
        • et al.
        Insulin resistance is not a major determinant of low-density lipoprotein particle size.
        Metabolism. 1997; 46: 1275-1280
        • Eschwege E.
        • Richard J.L.
        • Thibult N.
        • et al.
        Coronary heart disease mortality in relation with diabetes, blood glucose and plasma insulin levels.
        Horm Metab Res Suppl. 1985; 15: 41-46
        • Jarrett R.J.
        Type 2 (non-insulin-dependent) diabetes mellitus and coronary heart disease—chicken, egg or neither?.
        Diabetologia. 1984; 26: 99-102
        • Stern M.P.
        Diabetes and cardiovascular disease.
        Diabetes. 1995; 44: 369-374
        • Reaven G.M.
        Role of insulin resistance in human disease.
        Diabetes. 1988; 37: 1595-1607
        • Reaven G.M.
        • Chen Y.-I.D.
        • Jeppesen J.
        • et al.
        Insulin resistance and hyperinsulinemia in individuals with small, dense, low density lipoprotein particles.
        J Clin Invest. 1993; 92: 141-146
        • Juhan-Vague I.
        • Alessi M.C.
        • Vague P.
        Increased plasma plasminogen activator inhibitor 1 levels.
        Diabetologia. 1991; 34: 457-462
        • Hsueh W.
        • Law R.E.
        • Saad M.
        • et al.
        Insulin resistance and macrovascular disease.
        Curr Opin Endocrinol Diab. 1996; 3: 346-354
        • Howard G.
        • O’Leary D.H.
        • Zaccaro D.
        • et al.
        Insulin sensitivity and atherosclerosis.
        Circulation. 1996; 93: 1809-1817
        • Haffner S.M.
        • Miettinen H.
        Insulin resistance implications for type II diabetes mellitus and coronary heart disease.
        Am J Med. 1997; 103: 152-162
        • Knowler W.C.
        • Bennett P.H.
        • Hamman R.F.
        • Miller M.
        Diabetes incidence and prevalence in Pima Indians.
        Am J Epidemiol. 1978; 108: 497-505
        • Nelson R.G.
        • Sievers M.L.
        • Knowler W.C.
        • et al.
        Low incidence of fatal coronary heart disease in Pima Indians despite high prevalence of non-insulin-dependent diabetes.
        Circulation. 1990; 81: 987-995
        • Goff D.C.
        • Nichaman M.Z.
        • Chan W.
        • et al.
        Greater incidence of hospitalized myocardial infarction among Mexican Americans than non-Hispanic whites.
        Circulation. 1997; 95: 1433-1440
        • Haffner S.M.
        • Mykkanen L.
        • Valdez R.A.
        • et al.
        LDL size and subclass pattern in a biethnic population.
        Arterioscler Thromb. 1993; 13: 1623-1630
        • Haffner S.M.
        • Valdez R.A.
        • Hazuda H.P.
        • et al.
        Prospective analysis of the insulin-resistance syndrome (syndrome X).
        Diabetes. 1992; 41: 715-722
        • Grundy S.M.
        Small LDL, atherogenic dyslipidemia, and the metabolic syndrome.
        Circulation. 1997; 95: 1-4
        • Welborn T.A.
        • Wearne K.
        Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentrations.
        Diabetes Care. 1979; 2: 154-160
        • Pyörälä K.
        Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease.
        Diabetes Care. 1979; 2: 131-141
        • Ducimetiere P.
        • Eschwege E.
        • Papoz L.
        • et al.
        Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population.
        Diabetologia. 1980; 19: 205-210
        • Després J.-P.
        • Lamarche B.
        • Mauriège P.
        • et al.
        Hyperinsulinemia as an independent risk factor for ischemic heart disease.
        N Engl J Med. 1996; 334: 952-957
        • Howard G.
        • O’Leary D.H.
        • Zaccaro D.
        • et al.
        Insulin sensitivity and atherosclerosis.
        Circulation. 1996; 93: 1809-1817
        • Enas E.A.
        • Garg A.
        • Davidson M.A.
        • et al.
        Coronary heart disease and its risk factors in first-generation immigrant Asian Indians to the United States of America.
        Indian Heart J. 1996; 48: 343-353
        • Colwell J.A.
        • Halushka P.V.
        • Sarji K.E.
        • et al.
        Vascular disease in diabetes.
        Arch Intern Med. 1979; 139: 225-230
        • Hsueh W.A.
        • Quiñones M.J.
        • Creager M.A.
        Endothelium in insulin resistance and diabetes.
        Diabetes Rev. 1997; 5: 343-352
        • Libby P.
        • Geng Y.J.
        • Aikawa M.
        • et al.
        Macrophages and atherosclerotic plaque stability.
        Curr Opin Lipidol. 1996; 7: 330-335
        • Schwartz S.M.
        • deBlois D.
        • O’Brien E.R.M.
        The intima.
        Circ Res. 1995; 77: 445-465
        • Fuster V.
        • Badimon L.
        • Badimon J.J.
        • Chesebro J.H.
        The pathogenesis of coronary artery disease and the acute coronary syndromes (I).
        N Engl J Med. 1992; 326: 242-250
        • Lew E.A.
        • Garfinkel L.
        Variations in mortality by weight among 750,000 men and women.
        J Chron Dis. 1979; 32: 563-576
        • Gordon D.J.
        • Probstfield J.L.
        • Garrison R.J.
        • et al.
        High-density lipoprotein cholesterol and cardiovascular disease.
        Circulation. 1989; 79: 8-15
        • Hulley S.B.
        • Rosenman R.H.
        • Bawol R.D.
        • Brand R.J.
        Epidemiology as a guide to clinical decisions.
        N Engl J Med. 1980; 302: 1383-1389
        • Selwyn A.P.
        • Kinlay S.
        • Libby P.
        • Ganz P.
        Atherogenic lipids, vascular dysfunction, and clinical signs of ischemic heart disease.
        Circulation. 1997; 95: 5-7
        • Austin M.A.
        • Breslow J.L.
        • Hennekens C.H.
        • et al.
        Low-density lipoprotein subclass patterns and risk of myocardial infarction.
        JAMA. 1988; 260: 1917-1921
        • Campos H.
        • Genest Jr, J.J.
        • Blijlevens E.
        • et al.
        Low density lipoprotein particle size and coronary artery disease.
        Arterioscler Thromb. 1992; 12: 187-195
        • Lamarche B.
        • Tchernof A.
        • Moorjani S.
        • et al.
        Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men.
        Circulation. 1997; 95: 69-75
        • Hamsten A.
        • Wiman B.
        • de Faire U.
        • Blombäck M.
        Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction.
        N Engl J Med. 1985; 313: 1557-1563
        • Stokes III, J.
        • Kannel W.B.
        • Wolf P.A.
        • et al.
        Blood pressure as a risk factor for cardiovascular disease.
        Hypertension. 1989; 13: I13-I18
        • Wingard D.L.
        • Barrett-Connor E.L.
        • Ferrara A.
        Is insulin really a heart disease risk factor?.
        Diabetes Care. 1995; 18: 1299-1304
        • Orchard T.J.
        • Eichner J.
        • Kuller L.H.
        • et al.
        Insulin as a predictor of coronary heart disease.
        Ann Epidemiol. 1994; 4: 40-45
        • Yarnell J.W.G.
        • Sweetnam P.M.
        • Marks V.
        • et al.
        Insulin in ischaemic heart disease: are associations explained by triglyceride concentrations? The Caerphilly Prospective Study.
        Br Heart J. 1994; 71: 293-296
        • Howard G.
        • Manolio T.A.
        • Burke G.L.
        • et al.
        Does the association of risk factors and atherosclerosis change with age? An analysis of the combined ARIC and CHS cohorts.
        Stroke. 1997; 28: 1693-1701
        • Nabulsi A.A.
        • Folsom A.R.
        • Heiss G.
        • et al.
        Fasting hyperinsulinemia and cardiovascular disease risk factors in nondiabetic adults.
        Metabolism. 1995; 44: 914-922
        • White M.M.
        • Zamudio S.
        • Stevens T.
        • et al.
        Estrogen, progesterone, and vascular reactivity.
        Endocrine Rev. 1995; 16: 739-751
        • Reaven G.M.
        • Chen Y.D.
        Insulin resistance, its consequences, and coronary heart disease.
        Circulation. 1996; 93 (editorial): 1780-1783
        • Rewers M.
        • D’Agostino Jr, R.
        • Burke G.
        • et al.
        Coronary artery disease is associated with low insulin sensitivity independent of insulin levels and cardiovascular risk factors.
        Diabetes. 1996; 45 (Abstr.): 52A
        • Wu H.-Y.
        • Jeng Y.Y.
        • Yue C.-J.
        • et al.
        Endothelial-dependent vascular effects of insulin and insulin-like growth factor I in the perfused rat mesenteric artery and aortic ring.
        Diabetes. 1994; 43: 1027-1032
        • Garg U.C.
        • Hassid A.
        Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.
        J Clin Invest. 1989; 83: 1774-1777
        • Davies M.G.
        • Hagen P.O.
        Pathobiology of intimal hyperplasia.
        Br J Surg. 1994; 81: 1254-1269
        • von der Leyen H.E.
        • Gibbons G.H.
        • Morishita R.
        • et al.
        Gene therapy inhibiting neointimal vascular lesion.
        Proc Natl Acad Sci USA. 1995; 92: 1137-1141
        • Marks D.S.
        • Vita J.A.
        • Folts J.D.
        • et al.
        Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide.
        J Clin Invest. 1995; 96: 2630-2638
        • De Caterina R.
        • Libby P.
        • Peng H.-B.
        • et al.
        Nitric oxide decreases cytokine-induced endothelial activation.
        J Clin Invest. 1995; 96: 60-68
        • Zeiher A.M.
        • Fisslthaler B.
        • Schray-Utz B.
        • Busse R.
        Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells.
        Circ Res. 1995; 76: 980-986
        • Peng H.-B.
        • Libby P.
        • Liao J.K.
        Induction and stabilization of IκBα by nitric oxide mediates inhibition of NF-κB.
        J Biol Chem. 1995; 270: 14214-14219
        • Loscalzo J.
        Antiplatelet and antithrombotic effects of organic nitrates.
        Am J Cardiol. 1992; 70: 18B-22B
        • Radomski M.W.
        • Moncada S.
        The biological and pharmacological role of nitric oxide in platelet function.
        Adv Exp Med Biol. 1993; 344: 251-264
        • Banskota N.K.
        • Taub R.
        • Zellner K.
        • King G.L.
        Insulin, insulin-like growth factor I and platelet-derived growth factor interact additively in the induction of the protooncogene c-myc and cellular proliferation in cultured bovine aortic smooth muscle cells.
        Mol Endocrinol. 1989; 3: 1183-1190
        • Xi X.-P.
        • Graf K.
        • Goetze S.
        • et al.
        Inhibition of MAP kinase blocks insulin-mediated DNA synthesis and transcriptional activation of c-fos by Elk-1 in vascular smooth muscle cells.
        FEBS Lett. 1997; 417: 283-286
        • Stolar M.W.
        Atherosclerosis in diabetes.
        Metabolism. 1988; 37: 1-9
        • Anderson P.W.
        • Zhang X.Y.
        • Tian J.
        • et al.
        Insulin and angiotensin II are additive in stimulating TGF-β1 and matrix mRNAs in mesangial cells.
        Kidney Int. 1996; 50: 745-753
        • Tamaroglio T.A.
        • Lo C.S.
        Regulation of fibronectin by insulin-like growth factor-1 in cultured rat thoracic aortic smooth muscle cells and glomerular mesangial cells.
        Exp Cell Res. 1994; 215: 338-346
        • King G.L.
        • Brownlee M.
        The cellular and molecular mechanisms of diabetic complications.
        Endocrinol Metab Clin North Am. 1996; 25: 255-270
        • Zeng G.
        • Quon M.J.
        Insulin-stimulated production of nitric oxide is inhibited by wortmannin.
        J Clin Invest. 1996; 98: 894-898
        • Laakso M.
        • Edelman S.V.
        • Brechtel G.
        • Baron A.D.
        Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man.
        J Clin Invest. 1990; 85: 1844-1852
        • O’Brien S.F.
        • Watts G.F.
        • Playford D.A.
        • et al.
        Low-density lipoprotein size, high-density lipoprotein concentration, and endothelial dysfunction in non-insulin-dependent diabetes.
        Diab Med. 1997; 14: 974-978
        • Graf K.
        • Xi X.-P.
        • Yang D.
        • et al.
        Mitogen-activated protein kinase activation is involved in platelet-derived growth factor-directed migration by vascular smooth muscle cells.
        Hypertension. 1997; 29: 334-339
        • Marrero M.B.
        • Schieffer B.
        • Li B.
        • et al.
        Role of janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation.
        J Biol Chem. 1997; 272: 24684-24690
        • Jiang Z.
        • Lin Y.-W.
        • Clermont A.
        • et al.
        Direct demonstration of selective insulin resistance on PI 3-kinase pathway in vascular tissues of obese Zucker (fa/fa) rats.
        Diabetes. 1997; 46 (Abstr.): 54A
        • Laakso M.
        • Edelman S.V.
        • Brechtel G.
        • Baron A.D.
        Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM.
        Diabetes. 1992; 41: 1076-1083
        • Steinberg H.O.
        • Brechtel G.
        • Johnson A.
        • et al.
        Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent.
        J Clin Invest. 1994; 94: 1172-1179
        • Baron A.D.
        • Brechtel-Hook G.
        • Johnson A.
        • et al.
        Effect of perfusion rate on the time course of insulin-mediated skeletal muscle glucose uptake.
        Am J Physiol. 1996; 271: E1067-E1072
        • Steinberg H.O.
        • Cressman E.
        • Wu Y.
        • et al.
        Insulin mediated nitric oxide production is impaired in insulin resistance.
        Diabetes. 1997; 46 (Abstr.): 24A
        • Klein R.
        Hyperglycemia and microvascular and macrovascular disease in diabetes.
        Diabetes Care. 1995; 18: 258-268
        • Herman J.B.
        • Medalie J.H.
        • Goldbourt U.
        Differences in cardiovascular morbidity and mortality between previously known and newly diagnosed adult diabetics.
        Diabetologia. 1977; 13: 229-234
        • Haffner S.M.
        The prediabetic problem.
        J Diab Compl. 1997; 11: 69-76
        • Kuusisto J.
        • Mykkänen L.
        • Pyörälä K.
        • Laakso M.
        NIDDM and its metabolic control predict coronary heart disease in elderly subjects.
        Diabetes. 1994; 43: 960-967
        • Wingard D.L.
        • Barrett-Connor E.L.
        • Scheidt-Nave C.
        • McPhillips J.B.
        Prevalence of cardiovascular and renal complications in older adults with normal or impaired glucose tolerance or NIDDM.
        Diabetes Care. 1993; 16: 1022-1025
        • Reaven P.
        • Merat S.
        • Casanada F.
        • et al.
        Effects of streptozotocin-induced hyperglycemia on lipid profiles, formation of advanced glycation endproducts in lesions, and extent of atherosclerosis in LDL receptor-deficient mice.
        Arterioscler Thromb Vasc Biol. 1997; 17: 2250-2256
        • Kunjathoor V.V.
        • Wilson D.L.
        • LeBoeuf R.C.
        Increased atherosclerosis in streptozotocin-induced diabetic mice.
        J Clin Invest. 1996; 97: 1767-1773
        • Williams S.B.
        • Cusco J.A.
        • Roddy M.-A.
        • et al.
        Impaired nitric oxide-mediated vasodilation in non-insulin-dependent diabetes.
        Circulation. 1994; 90 (Abstr.): I-513
        • Stamler J.
        • Vaccaro O.
        • Neaton J.D.
        • Wentworth D.
        Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial.
        Diabetes Care. 1993; 16: 434-444
        • Laakso M.
        • Lehto S.
        • Penttilä I.
        • Pyörälä K.
        Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes.
        Circulation. 1993; 88: 1421-1430
        • Pyörälä K.
        • Pedersen T.R.
        • Kjekshus J.
        • et al.
        Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease.
        Diabetes Care. 1997; 20: 614-620
        • Sacks F.M.
        • Pfeffer M.A.
        • Moye L.A.
        • et al.
        The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels.
        N Engl J Med. 1996; 335: 1001-1009
        • Miettinen H.
        • Lehto S.
        • Salomaa V.
        • et al.
        Impact of diabetes on mortality after the first myocardial infarction.
        Diabetes Care. 1998; 21: 69-80
        • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults
        Summary of the Second Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II).
        JAMA. 1993; 269: 3015-3023
        • Chen S.-Y.
        • Yu B.-J.
        • Liang Y.-Q.
        • Lin W.-D.
        Platelet aggregation, platelet cAMP levels and thromboxane B2 synthesis in patients with diabetes mellitus.
        Chin Med J (Engl). 1990; 103: 312-318
        • Kinlough-Rathbone R.L.
        • Chahil A.
        • Mustard J.F.
        Effect of external calcium and magnesium on thrombin-induced changes in calcium and magnesium of pig platelets.
        Am J Physiol. 1973; 224: 941-945
        • Nadler J.L.
        • Malayan S.
        • Luong H.
        • et al.
        Intracellular free magnesium deficiency plays a key role in increased platelet reactivity in type II diabetes mellitus.
        Diabetes Care. 1992; 15: 835-841
        • Krishnamurti C.
        • Alving B.M.
        Plasminogen activator inhibitor type 1.
        Semin Thrombosis Hemost. 1992; 18: 67-80
        • Eriksson P.
        • Kallin B.
        • Van’t Hooft F.M.
        • et al.
        Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction.
        Proc Natl Acad Sci USA. 1995; 92: 1851-1855
        • American Diabetes Association
        Aspirin therapy in diabetes.
        Diabetes Care. 1998; 21: S45-S46
        • Johnstone M.T.
        • Creager S.J.
        • Scales K.M.
        • et al.
        Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus.
        Circulation. 1993; 88: 2510-2516
        • Calver A.
        • Collier J.
        • Vallance P.
        Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes.
        J Clin Invest. 1992; 90: 2548-2554
        • Halkin A.
        • Benjamin N.
        • Doktor H.S.
        • et al.
        Vascular responsiveness and cation exchange in insulin-dependent diabetes.
        Clin Sci. 1991; 81: 223-232
        • Smits P.
        • Kapma J.-A.
        • Jacobs M.-C.
        • et al.
        Endothelium-dependent vascular relaxation in patients with type I diabetes.
        Diabetes. 1993; 42: 148-153
        • McVeigh G.E.
        • Brennan G.M.
        • Johnston G.D.
        • et al.
        Impaired endothelium-dependent and independent vasodilatation in patients with type 2 (non-insulin-dependent) diabetes mellitus.
        Diabetologia. 1992; 35: 771-776
        • Gryglewski R.J.
        • Palmer R.M.J.
        • Moncada S.
        Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor.
        Nature. 1986; 320: 454-456
        • Vlassara H.
        • Fuh H.
        • Makita Z.
        • et al.
        Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals.
        Proc Natl Acad Sci USA. 1992; 89: 12043-12047
        • Diederich D.
        • Skopec J.
        • Diederich A.
        • Dai F.-X.
        Endothelial dysfunction in mesenteric resistance arteries of diabetic rats.
        Am J Physiol. 1994; 266: H1153-H1161
        • Hattori Y.
        • Kawasaki H.
        • Abe K.
        • Kanno M.
        Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta.
        Am J Physiol. 1991; 261: H1086-H1094
        • Timimi F.K.
        • Ting H.H.
        • Boles K.S.
        • et al.
        Acute vitamin C administration improves endothelium-dependent vasodilation in insulin-dependent diabetic patients.
        J Am Coll Cardiol. 1996; 27 (Abstr.): 177A
        • Ting H.H.
        • Timimi F.K.
        • Boles K.S.
        • et al.
        Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus.
        J Clin Invest. 1996; 97: 22-28
        • Mukherjee R.
        • Davies P.J.A.
        • Crombie D.L.
        • et al.
        Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists.
        Nature. 1997; 386: 407-410
        • Saltiel A.R.
        • Olefsky J.M.
        Thiazolidinediones in the treatment of insulin resistance and type II diabetes.
        Diabetes. 1996; 45: 1661-1669
        • Suter S.L.
        • Nolan J.J.
        • Wallace P.
        • et al.
        Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects.
        Diabetes Care. 1992; 15: 193-203
        • Ciaraldi T.P.
        • Huber-Knudsen K.
        • Hickman M.
        • Olefsky J.M.
        Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents.
        Metabolism. 1995; 44: 976-982
        • Tafuri S.R.
        Troglitazone enhances differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes.
        Endocrinology. 1996; 137: 4706-4712
        • Vidal-Puig A.J.
        • Considine R.V.
        • Jimenez-Liñan M.
        • et al.
        Peroxisome proliferator-activated receptor gene expression in human tissues.
        J Clin Invest. 1997; 99: 2416-2422
        • Oakes N.D.
        • Camilleri S.
        • Furler S.M.
        • et al.
        The insulin sensitizer, BRL 49653, reduces systemic fatty acid supply and utilization and tissue lipid availability in the rat.
        Metabolism. 1997; 46: 935-942
        • Park K.S.
        • Ciaraldi T.P.
        • Abrams-Carter L.
        • et al.
        PPAR-γ gene expression is elevated in skeletal muscle of obese and type II diabetic subjects.
        Diabetes. 1997; 46: 1230-1234
        • Nolan J.J.
        • Ludvik B.
        • Beerdsen P.
        • et al.
        Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone.
        N Engl J Med. 1994; 331: 1188-1193
        • Kumar S.
        • Boulton A.J.M.
        • Beck-Nielson H.
        • et al.
        Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients.
        Diabetologia. 1996; 39: 701-709
        • Ehrmann D.A.
        • Schneider D.J.
        • Sobel B.E.
        • et al.
        Troglitazone improves defects in insulin action, insulin secretion, ovarian steroidogenesis, and fibrinolysis in women with polycystic ovary syndrome.
        J Clin Endocrinol Metab. 1997; 82: 2108-2116
        • Law R.E.
        • Meehan W.P.
        • Xi X.-P.
        • et al.
        Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia.
        J Clin Invest. 1996; 98: 1897-1905
        • Ross R.
        The pathogenesis of atherosclerosis - an update.
        N Engl J Med. 1986; 314: 488-500
        • Klemke R.L.
        • Cai S.
        • Giannini A.L.
        • et al.
        Regulation of cell motility by mitogen-activated protein kinase.
        J Cell Biol. 1997; 137: 481-492
        • Choudhury G.G.
        • Karamitsos C.
        • Hernandez J.
        • et al.
        PI-3-kinase and MAPK regulate mesangial cell proliferation and migration in response to PDGF.
        Am J Physiol. 1997; 273: F931-F938
        • Gille H.
        • Kortenjann M.
        • Strahl T.
        • Shaw P.E.
        Phosphorylation-dependent formation of a quaternary complex at the c-fos SRE.
        Mol Cell Biol. 1996; 16: 1094-1102
        • Szewczyk A.
        Intracellular targets for antidiabetic sulfonylureas and potassium channel openers.
        Biochem Pharmacol. 1997; 54: 961-965
        • Dellsperger K.C.
        Potassium channels and the coronary circulation.
        Clin Exp Pharmacol Physiol. 1996; 23: 1096-1101
        • Meinert C.L.
        • Knatterud G.L.
        • Prout T.E.
        • Klimt C.R.
        A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes: II. Mortality results.
        Diabetes. 1970; 19: 789-830
        • Dominguez L.J.
        • Davidoff A.J.
        • Srinivas P.R.
        • et al.
        Effects of metformin on tyrosine kinase activity, glucose transport, and intracellular calcium in rat vascular smooth muscle.
        Endocrinology. 1996; 137: 113-121
        • Sharma R.V.
        • Bhalla R.C.
        Metformin attenuates agonist-stimulated calcium transients in vascular smooth muscle cells.
        Clin Exp Hypertens. 1995; 17: 913-929
        • Colwell J.A.
        The feasibility of intensive insulin management in non-insulin-dependent diabetes mellitus.
        Ann Intern Med. 1996; 124: 131-135
        • The Diabetes Control and Complications Trial Research Group
        The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.
        N Engl J Med. 1993; 329: 977-986