Advertisement

Therapeutic Dilemmas in Mixed Septic-Cardiogenic Shock

Published:October 13, 2022DOI:https://doi.org/10.1016/j.amjmed.2022.09.022

      Abstract

      Sepsis is an increasing cause of decompensation in patients with chronic heart failure with reduced or preserved ejection fraction. Sepsis and decompensated heart failure results in a mixed septic-cardiogenic shock that poses several therapeutic dilemmas: Rapid fluid resuscitation is the cornerstone of sepsis management, while loop diuretics are the main stay of decompensated heart failure treatment. Whether inotropic therapy with dobutamine or inodilators improves microvascular alterations remains unsettled in sepsis. When to resume loop diuretic therapy in patients with sepsis and decompensated heart failure is unclear. In the absence of relevant guidelines, we review vasopressor therapy, the timing and volume of fluid resuscitation, and the need for inotropic therapy in patients who, with sepsis and decompensated heart failure, present with a mixed septic-cardiogenic shock.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pandolfi F
        • Guillemot D
        • Watier L
        • Brun-Buisson C.
        Trends in bacterial sepsis incidence and mortality in France between 2015 and 2019 based on National Health Data System (Système National des données de Santé (SNDS)): a retrospective observational study.
        BMJ Open. 2022; 12e058205https://doi.org/10.1136/bmjopen-2021-058205
        • Jentzer JC
        • van Diepen S
        • Hollenberg SM
        • Lawler PR
        • Kashani KB.
        Shock severity assessment in cardiac intensive care unit patients with sepsis and mixed septic-cardiogenic shock.
        Mayo Clinic Proc Innov Qual Outcomes. 2022; 6: 37-44https://doi.org/10.1016/j.mayocpiqo.2021.11.008
        • De Matteis G
        • Covino M
        • Burzo ML
        • et al.
        Clinical characteristics and predictors of in-hospital mortality among older patients with acute heart failure.
        J Clin Med. 2022; 11: 439https://doi.org/10.3390/jcm11020439
        • Drozd M
        • Garland E
        • Walker AMN
        • et al.
        Infection-related hospitalization in heart failure with reduced ejection fraction: a prospective observational cohort study.
        Circ Heart Fail. 2020; 13e006746https://doi.org/10.1161/circheartfailure.119.006746
        • Ueda T
        • Kawakami R
        • Horii M
        • et al.
        Noncardiovascular death, especially infection, is a significant cause of death in elderly patients with acutely decompensated heart failure.
        J Card Fail. 2014; 20: 174-180https://doi.org/10.1016/j.cardfail.2013.12.007
        • Vindhyal MR
        • Lu LK
        • Ranka S
        • Acharya P
        • Shah Z
        • Gupta K.
        Impact of underlying congestive heart failure on in-hospital outcomes in patients with septic shock.
        J Intensive Care Med. 2022; 37: 965-969https://doi.org/10.1177/08850666211061472
        • Walker AMN
        • Drozd M
        • Hall M
        • et al.
        Prevalence and predictors of sepsis death in patients with chronic heart failure and reduced left ventricular ejection fraction.
        J Am Heart Assoc. 2018; 7e009684https://doi.org/10.1161/jaha.118.009684
        • Bou Chebl R
        • Jamali S
        • Sabra M
        • et al.
        Lactate/albumin ratio as a predictor of in-hospital mortality in septic patients presenting to the emergency department.
        Front Med. 2020; 7550182https://doi.org/10.3389/fmed.2020.550182
        • Kim JS
        • Kim YJ
        • Kim M
        • Ryoo SM
        • Kim WY.
        Association between right ventricle dysfunction and poor outcome in patients with septic shock.
        Heart. 2020; 106: 1665-1671https://doi.org/10.1136/heartjnl-2020-316889
        • Antonucci E
        • Fiaccadori E
        • Donadello K
        • Taccone FS
        • Franchi F
        • Scolletta S.
        Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment.
        J Crit Care. 2014; 29: 500-511https://doi.org/10.1016/j.jcrc.2014.03.028
        • Hanumanthu BKJ
        • Nair AS
        • Katamreddy A
        • et al.
        Sepsis-induced cardiomyopathy is associated with higher mortality rates in patients with sepsis.
        Acute Crit Care. 2021; 36: 215-222https://doi.org/10.4266/acc.2021.00234
        • Ravikumar N
        • Sayed MA
        • Poonsuph CJ
        • Sehgal R
        • Shirke MM
        • Harky A.
        Septic cardiomyopathy: from basics to management choices.
        Curr Probl Cardiol. 2021; 46100767https://doi.org/10.1016/j.cpcardiol.2020.100767
        • Forcey DS
        • FitzGerald MP
        • Burggraf MK
        • Nagalingam V
        • Ananda-Rajah MR.
        'Cold and lonely': emergency presentations of patients with hypothermia to a large Australian health network.
        Intern Med J. 2020; 50: 54-60https://doi.org/10.1111/imj.14308
        • Cecconi M
        • De Backer D
        • Antonelli M
        • et al.
        Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.
        Intensive Care Med. 2014; 40: 1795-1815https://doi.org/10.1007/s00134-014-3525-z
        • Alhazzani W
        • Møller MH
        • Arabi YM
        • et al.
        Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19).
        Crit Care Med. 2020; 48: e440-e469https://doi.org/10.1097/ccm.0000000000004363
        • Chalfin DB.
        Vasopressor therapy early, or vasopressors later? Still an important question in septic shock.
        Crit Care Med. 2022; 50: 717-718https://doi.org/10.1097/ccm.0000000000005449
        • Rhodes A
        • Evans LE
        • Alhazzani W
        • et al.
        Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016.
        Intensive Care Med. 2017; 43: 304-377https://doi.org/10.1007/s00134-017-4683-6
        • Vincent JL
        • De Backer D
        Circulatory shock.
        N Engl J Med. 2013; 369: 1726-1734https://doi.org/10.1056/NEJMra1208943
        • Bitton E
        • Zimmerman S
        • Azevedo LCP
        • et al.
        An international survey of adherence to Surviving Sepsis Campaign Guidelines 2016 regarding fluid resuscitation and vasopressors in the initial management of septic shock.
        J Crit Care. 2022; 68: 144-154https://doi.org/10.1016/j.jcrc.2021.11.016
        • Cheng L
        • Yan J
        • Han S
        • et al.
        Comparative efficacy of vasoactive medications in patients with septic shock: a network meta-analysis of randomized controlled trials.
        Crit Care. 2019; 23: 168https://doi.org/10.1186/s13054-019-2427-4
        • Kislitsina ON
        • Rich JD
        • Wilcox JE
        • et al.
        Shock - classification and pathophysiological principles of therapeutics.
        Curr Cardiol Rev. 2019; 15: 102-113https://doi.org/10.2174/1573403×15666181212125024
        • Arfaras-Melainis A
        • Polyzogopoulou E
        • Triposkiadis F
        • et al.
        Heart failure and sepsis: practical recommendations for the optimal management.
        Heart Fail Rev. 2020; 25: 183-194https://doi.org/10.1007/s10741-019-09816-y
        • Levy B
        • Clere-Jehl R
        • Legras A
        • et al.
        Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction.
        J Am Coll Cardiol. 2018; 72: 173-182https://doi.org/10.1016/j.jacc.2018.04.051
        • Myburgh JA
        • Higgins A
        • Jovanovska A
        • Lipman J
        • Ramakrishnan N
        • Santamaria J.
        A comparison of epinephrine and norepinephrine in critically ill patients.
        Intensive Care Med. 2008; 34: 2226-2234https://doi.org/10.1007/s00134-008-1219-0
        • Annane D
        • Vignon P
        • Renault A
        • et al.
        Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial.
        Lancet. 2007; 370: 676-684https://doi.org/10.1016/s0140-6736(07)61344-0
        • Léopold V
        • Gayat E
        • Pirracchio R
        • et al.
        Correction to: epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients.
        Intensive Care Med. 2018; 44: 2022-2023https://doi.org/10.1007/s00134-018-5372-9
        • Léopold V
        • Gayat E
        • Pirracchio R
        • et al.
        Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients.
        Intensive Care Med. 2018; 44: 847-856https://doi.org/10.1007/s00134-018-5222-9
        • Le Tulzo Y
        • Seguin P
        • Gacouin A
        • et al.
        Effects of epinephrine on right ventricular function in patients with severe septic shock and right ventricular failure: a preliminary descriptive study.
        Intensive Care Med. 1997; 23: 664-670https://doi.org/10.1007/s001340050391
        • Russell JA
        • Walley KR
        • Singer J
        • et al.
        Vasopressin versus norepinephrine infusion in patients with septic shock.
        N Engl J Med. 2008; 358: 877-887https://doi.org/10.1056/NEJMoa067373
        • Demiselle J
        • Fage N
        • Radermacher P
        • Asfar P.
        Vasopressin and its analogues in shock states: a review.
        Ann Intensive Care. 2020; 10: 9https://doi.org/10.1186/s13613-020-0628-2
        • Dünser MW
        • Mayr AJ
        • Ulmer H
        • et al.
        The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysis.
        Anesthes Analg. 2001; 93: 7-13https://doi.org/10.1097/00000539-200107000-00003
        • Bernadich C
        • Bandi JC
        • Melin P
        • Bosch J.
        Effects of F-180, a new selective vasoconstrictor peptide, compared with terlipressin and vasopressin on systemic and splanchnic hemodynamics in a rat model of portal hypertension.
        Hepatology. 1998; 27: 351-356https://doi.org/10.1002/hep.510270206
        • McIntyre WF
        • Um KJ
        • Alhazzani W
        • et al.
        Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis.
        JAMA. 2018; 319: 1889-1900https://doi.org/10.1001/jama.2018.4528
        • Sahoo P
        • Kothari N
        • Goyal S
        • Sharma A
        • Bhatia PK.
        Comparison of norepinephrine and terlipressin vs norepinephrine alone for management of septic shock: a randomized control study.
        Indian J Crit Care. 2022; 26: 669-675https://doi.org/10.5005/jp-journals-10071-24231
        • Shankar A
        • Gurumurthy G
        • Sridharan L
        • et al.
        A clinical update on vasoactive medication in the management of cardiogenic shock.
        Clin Med Insights Cardiol. 2022; 1611795468221075064https://doi.org/10.1177/11795468221075064
        • Acheampong A
        • Vincent JL.
        A positive fluid balance is an independent prognostic factor in patients with sepsis.
        Crit Care. 2015; 19: 251https://doi.org/10.1186/s13054-015-0970-1
        • Boyd JH
        • Forbes J
        • Nakada TA
        • Walley KR
        • Russell JA.
        Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality.
        Crit Care Med. 2011; 39: 259-265https://doi.org/10.1097/CCM.0b013e3181feeb15
        • Acharya R
        • Patel A
        • Schultz E
        • et al.
        Fluid resuscitation and outcomes in heart failure patients with severe sepsis or septic shock: a retrospective case-control study.
        PLoS One. 2021; 16e0256368https://doi.org/10.1371/journal.pone.0256368
        • Akhter M
        • Potter T
        • Stowell J.
        The safety of the sepsis fluid bolus for patients at increased risk of volume overload.
        Am J Emerg Med. 2021; 41: 6-8https://doi.org/10.1016/j.ajem.2020.12.043
        • Ehrman RR
        • Ottenhoff JD
        • Favot MJ
        • et al.
        Do septic patients with reduced left ventricular ejection fraction require a low-volume resuscitative strategy?.
        Am J Emerg Med. 2022; 52: 187-190https://doi.org/10.1016/j.ajem.2021.11.046
        • Khan RA
        • Khan NA
        • Bauer SR
        • et al.
        Association between volume of fluid resuscitation and intubation in high-risk patients with sepsis, heart failure, end-stage renal disease, and cirrhosis.
        Chest. 2020; 157: 286-292https://doi.org/10.1016/j.chest.2019.09.029
        • Taenzer AH
        • Patel SJ
        • Allen TL
        • et al.
        Improvement in mortality with early fluid bolus in sepsis patients with a history of congestive heart failure.
        Mayo Clinic Proc Innov Qual Outcomes. 2020; 4: 537-541https://doi.org/10.1016/j.mayocpiqo.2020.05.008
        • Kuttab HI
        • Lykins JD
        • Hughes MD
        • et al.
        Evaluation and predictors of fluid resuscitation in patients with severe sepsis and septic shock.
        Crit Care Med. 2019; 47: 1582-1590https://doi.org/10.1097/ccm.0000000000003960
        • Rourke EM
        • Kuttab HI
        • Lykins JD
        • et al.
        Fluid resuscitation in septic patients with comorbid heart failure.
        Crit Care Med. 2021; 49: e201-e204https://doi.org/10.1097/ccm.0000000000004730
        • Dong N
        • Gao N
        • Hu W
        • Mu Y
        • Pang L.
        Association of fluid management with mortality of sepsis patients with congestive heart failure: a retrospective cohort study.
        Front Med. 2022; 9714384https://doi.org/10.3389/fmed.2022.714384
        • Boccio E
        • Haimovich AD
        • Jacob V
        • Maciejewski KR
        • Wira CR
        • Belsky J.
        Sepsis fluid metric compliance and its impact on outcomes of patients with congestive heart failure, end-stage renal disease or obesity.
        J Emerg Med. 2021; 61: 466-480https://doi.org/10.1016/j.jemermed.2021.03.004
        • Pence M
        • Tran QK
        • Shesser R
        • Payette C
        • Pourmand A.
        Outcomes of CMS-mandated fluid administration among fluid-overloaded patients with sepsis: A systematic review and meta-analysis.
        Am J Emerg Med. 2022; 55: 157-166https://doi.org/10.1016/j.ajem.2022.03.004
        • Truong TN
        • Dunn AS
        • McCardle K
        • et al.
        Adherence to fluid resuscitation guidelines and outcomes in patients with septic shock: Reassessing the "one-size-fits-all" approach.
        J Crit Care. 2019; 51: 94-98https://doi.org/10.1016/j.jcrc.2019.02.006
        • Al Abbasi B
        • Torres P
        • Ramos-Tuarez F
        • et al.
        Implementation of the surviving sepsis campaign in patients with heart failure: gender-specific outcomes.
        Cureus. 2020; 12: e9140https://doi.org/10.7759/cureus.9140
        • Jones TW
        • Chase AM
        • Bruning R
        • Nimmanonda N
        • Smith SE
        • Sikora A.
        Early diuretics for de-resuscitation in septic patients with left ventricular dysfunction.
        Clin Med Insights Cardiol. 2022; 1611795468221095875https://doi.org/10.1177/11795468221095875
        • Singh H
        • Ramai D
        • Patel H
        • et al.
        B-type natriuretic peptide: a predictor for mortality, intensive care unit length of stay, and hospital length of stay in patients with resolving sepsis.
        Cardiol Res. 2017; 8: 271-275https://doi.org/10.14740/cr605w
        • Kelly J
        • Cheng J
        • Malloy R
        • Lupi K.
        Comparison of positive inotropic agents in the management of acute decompensated heart failure.
        J Cardiovasc Pharmacol. 2020; 75: 455-459https://doi.org/10.1097/fjc.0000000000000811
        • Yajnik V
        • Maarouf R.
        Sepsis and the microcirculation: the impact on outcomes.
        Curr Opin Anaesthesiol. 2022; 35: 230-235https://doi.org/10.1097/aco.0000000000001098
        • De Backer D
        • Ricottilli F
        • Ospina-Tascón GA.
        Septic shock: a microcirculation disease.
        Curr Opin Anaesthesiol. 2021; 34: 85-91https://doi.org/10.1097/aco.0000000000000957
        • Vincent JL
        • De Backer D.
        Oxygen transport-the oxygen delivery controversy.
        Intensive Care Med. 2004; 30: 1990-1996https://doi.org/10.1007/s00134-004-2384-4
        • Vincent JL
        • Roman A
        • De Backer D
        • Kahn RJ.
        Oxygen uptake/supply dependency. Effects of short-term dobutamine infusion.
        Am Rev Respir Dis. 1990; 142: 2-7https://doi.org/10.1164/ajrccm/142.6_Pt_2.S2
        • Ospina-Tascón GA
        • García Marin AF
        • Echeverri GJ
        • et al.
        Effects of dobutamine on intestinal microvascular blood flow heterogeneity and O(2) extraction during septic shock.
        J App Physiol (1985). 2017; 122: 1406-1417https://doi.org/10.1152/japplphysiol.00886.2016
        • Secchi A
        • Wellmann R
        • Martin E
        • Schmidt H.
        Dobutamine maintains intestinal villus blood flow during normotensive endotoxemia: an intravital microscopic study in the rat.
        J Crit Care. 1997; 12: 137-141https://doi.org/10.1016/s0883-9441(97)90043-5
        • Lebuffe G
        • Levy B
        • Nevière R
        • et al.
        Dobutamine and gastric-to-arterial carbon dioxide gap in severe sepsis without shock.
        Intensive Care Med. 2002; 28: 265-271https://doi.org/10.1007/s00134-001-1198-x
        • Morelli A
        • De Castro S
        • Teboul JL
        • et al.
        Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression.
        Intensive Care Med. 2005; 31: 638-644https://doi.org/10.1007/s00134-005-2619-z
        • Bangash MN
        • Abbott TEF
        • Patel NSA
        • Hinds CJ
        • Thiemermann C
        • Pearse RM.
        The effect of β(2)-adrenoceptor agonists on leucocyte-endothelial adhesion in a rodent model of laparotomy and endotoxemia.
        Front Immunol. 2020; 11: 1001https://doi.org/10.3389/fimmu.2020.01001
        • Hayes MA
        • Timmins AC
        • Yau EH
        • Palazzo M
        • Hinds CJ
        • Watson D.
        Elevation of systemic oxygen delivery in the treatment of critically ill patients.
        N Engl J Med. 1994; 330: 1717-1722https://doi.org/10.1056/nejm199406163302404
        • Zhu Y
        • Yin H
        • Zhang R
        • Ye X
        • Wei J.
        The effect of dobutamine in sepsis: a propensity score matched analysis.
        BMC Infect Dis. 2021; 21: 1151https://doi.org/10.1186/s12879-021-06852-8
        • Ospina-Tascón GA
        • Calderón-Tapia LE.
        Inodilators in septic shock: should these be used?.
        Ann Transl Med. 2020; 8: 796https://doi.org/10.21037/atm.2020.04.43
        • Scheeren TWL
        • Bakker J
        • Kaufmann T
        • et al.
        Current use of inotropes in circulatory shock.
        Ann Intensive Care. 2021; 11: 21https://doi.org/10.1186/s13613-021-00806-8
        • Dünser MW
        • Ruokonen E
        • Pettilä V
        • et al.
        Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial.
        Crit Care. 2009; 13: R181https://doi.org/10.1186/cc8167
        • Merx MW
        • Weber C.
        Sepsis and the heart.
        Circulation. 2007; 116: 793-802https://doi.org/10.1161/circulationaha.106.678359
        • Biering-Sørensen T
        • Hoffmann S
        • Mogelvang R
        • et al.
        Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris.
        Circ Cardiovasc Imaging. 2014; 7: 58-65https://doi.org/10.1161/circimaging.113.000989
        • Shah AM
        • Solomon SD.
        Myocardial deformation imaging: current status and future directions.
        Circulation. 2012; 125: e244-e248https://doi.org/10.1161/circulationaha.111.086348
        • Ng PY
        • Sin WC
        • Ng AK
        • Chan WM.
        Speckle tracking echocardiography in patients with septic shock: a case control study (SPECKSS).
        Crit Care. 2016; 20: 145https://doi.org/10.1186/s13054-016-1327-0
        • Hai PD
        • Binh NT
        • Hien NVQ
        • et al.
        Prognostic role of left ventricular systolic function measured by speckle tracking echocardiography in septic shock.
        Biomed Res Int. 2020; 20207927353https://doi.org/10.1155/2020/7927353
        • Palmieri V
        • Innocenti F
        • Guzzo A
        • Guerrini E
        • Vignaroli D
        • Pini R.
        Left ventricular systolic longitudinal function as predictor of outcome in patients with sepsis.
        Circ Cardiovasc Imaging. 2015; 8 (discussion e003865)e003865https://doi.org/10.1161/circimaging.115.003865
        • Guo J
        • Zhang X
        • Zhu Y
        • Cheng Q.
        Comparison of dobutamine and levosimendan for treatment of sepsis-induced cardiac dysfunction: A protocol for systematic review and meta-analysis.
        Medicine. 2022; 101https://doi.org/10.1097/md.0000000000029092
        • Lehtonen L
        • Põder P.
        The utility of levosimendan in the treatment of heart failure.
        Ann Med. 2007; 39: 2-17https://doi.org/10.1080/07853890601073346
        • Avgeropoulou C
        • Andreadou I
        • Markantonis-Kyroudis S
        • et al.
        The Ca2+-sensitizer levosimendan improves oxidative damage, BNP and pro-inflammatory cytokine levels in patients with advanced decompensated heart failure in comparison to dobutamine.
        Eur J Heart Fail. 2005; 7: 882-887https://doi.org/10.1016/j.ejheart.2005.02.002
        • Morelli A
        • Donati A
        • Ertmer C
        • et al.
        Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study.
        Crit Care. 2010; 14: R232https://doi.org/10.1186/cc9387
        • Magnin M
        • Bonnet-Garin JM
        • Laurenza C
        • et al.
        Evaluation of pimobendan effect on sublingual microcirculation in an experimental pharmacology induced hypotension porcine model.
        Res Vet Sci. 2022; 148: 7-14https://doi.org/10.1016/j.rvsc.2022.03.021
        • Liu DH
        • Ning YL
        • Lei YY
        • et al.
        Levosimendan versus dobutamine for sepsis-induced cardiac dysfunction: a systematic review and meta-analysis.
        Sci Rep. 2021; 11: 20333https://doi.org/10.1038/s41598-021-99716-9
        • Gordon AC
        • Perkins GD
        • Singer M
        • et al.
        Levosimendan for the prevention of acute organ dysfunction in sepsis.
        N Engl J Med. 2016; 375: 1638-1648https://doi.org/10.1056/NEJMoa1609409
        • Mathew R
        • Di Santo P
        • Jung RG
        • et al.
        Milrinone as compared with dobutamine in the treatment of cardiogenic shock.
        N Engl J Med. 2021; 385: 516-525https://doi.org/10.1056/NEJMoa2026845
        • Movsesian M.
        Novel approaches to targeting PDE3 in cardiovascular disease.
        Pharmacol Ther. 2016; 163: 74-81https://doi.org/10.1016/j.pharmthera.2016.03.014