Advertisement

Microvascular Dysfunction as a Systemic Disease: A Review of the Evidence

      Abstract

      Microvascular dysfunction describes a varied set of conditions that includes vessel destruction, abnormal vasoreactivity, in situ thrombosis, and fibrosis, which ultimately results in tissue damage and progressive organ failure. Microvascular dysfunction has a wide array of clinical presentations, ranging from ischemic heart disease to renal failure, stroke, blindness, pulmonary arterial hypertension, and dementia. An intriguing unifying hypothesis suggests that microvascular dysfunction of specific organs is an expression of a systemic illness that worsens with age and is accelerated by vascular risk factors. Studying relationships across a spectrum of microvascular diseases affecting the brain, retina, kidney, lung, and heart may uncover shared pathologic mechanisms that could inform novel treatment strategies. We review the evidence that supports the notion that microvascular dysfunction represents a global pathologic process. Our focus is on studies reporting concomitant microvascular dysfunction of the heart with that of the brain, kidney, retina, and lung.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gutterman DD
        • Chabowski DS
        • Kadlec AO
        • et al.
        The human microcirculation. Regulation of flow and beyond.
        Circ Res. 2016; 118: 157-172
        • Thompson CS
        • Hakim AM
        Living beyond our physiological means. Small vessel disease of the brain is an expression of a sytemic failure in arteriolar function: A unifying hypothesis.
        Stroke. 2009; 40: e322-e330
        • Sax FL
        • Cannon RO
        • Hanson C
        • Epstein SE
        Impaired forearm vasodilator reserve in patients with microvascular angina. Evidence of a generalized disorder of vascular function?.
        N Engl J Med. 1987; 317: 1366-1370
        • Berry C
        • Sidik N
        • Pereira AC
        • et al.
        Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions.
        J Am Heart Assoc. 2019; 8e011104
        • Mejia-Renteria H
        • Matias-Guiu JA
        • Lauri F
        • Yus M
        • Escaned J
        Microcirculatory dysfunction in the heart and brain.
        Minerva Cardioangiol. 2019; 67: 318-329
        • Thomas MA
        • Hazany S
        • Ellingson BM
        • Hu P
        • Nguyen KL
        Pathophysiology, classification, and MRI paralles in microvascular disease of the heart and brain.
        Microcirculation. 2020; 27: e12648
        • Kunadian V
        • Chieffo A
        • Camici P
        • et al.
        An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on coronary pathophysiology & microcirculation endorsed by Coronary Vasomotor Disorders International Study Group.
        Eur Heart J. 2020; 41: 3504-3520
        • Murthy VL
        • Naya M
        • Taqueti VR
        • et al.
        Effects of sex on coronary microvascular dysfunction and cardiac outcomes.
        Circulation. 2014; 129: 2518-2527
        • Bairey Merz CN
        • Pepine CJ
        • Walsh MN
        • Fleg JL
        Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade.
        Circulation. 2017; 135: 1075-1092
        • DelBuono MG
        • Montone RA
        • Camilli M
        • et al.
        Coronary microvascular dysfunction across the spectrum of cardiovascular diseases.
        J Am Coll Cardiol. 2021; 78: 1352-1371
        • Patel H
        • Aggarwal NT
        • Rao A
        • et al.
        Microvascular disease and small-vessel disease: the nexus of multiple diseases of women.
        J Womens Health (Larchmt). 2020; 29: 770-779
        • Li Q
        • Yang Y
        • Reis C
        • et al.
        Cerebral small vessel disease.
        Cell Transplant. 2018; 27: 1711-1722
        • Cannistraro RJ
        • Badi M
        • Eidelman BH
        • Dickson DW
        • Middlebrooks EH
        • Meschia JF
        CNS small vessel disease: a clinical review.
        Neurology. 2019; 92: 1146-1156
        • Gorelick PB
        • Scuteri A
        • Black SE
        • et al.
        Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2011; 42: 2672-2713
        • Fang Y
        • Qin T
        • Liu W
        • et al.
        Cerebral small-vessel disease and risk of incidence of depression: a meta-analysis of longitudinal cohort studies.
        J Am Heart Assoc. 2020; 9e016512
        • Gatti L
        • Tinelli F
        • Scelzo E
        • et al.
        Understanding the pathophysiology of cerebral amyloid angiopathy.
        Int J Mol Sci. 2020; 21: 3435
        • Drawz P
        • Rahman M
        Chronic kidney disease.
        Ann Intern Med. 2015; 162: ITC1-IT16
        • Krishnan S
        • Suarez-Martinez AD
        • Bagher P
        • et al.
        Microvascular dysfunction and kidney disease: challenges and opportunities?.
        Microcirculation. 2021; 28: e12661
        • Duh EJ
        • Sun JK
        • Stitt AW
        Diabetic retinopathy: current understanding, mechanisms, and treatment strategies.
        JCI Insight. 2017; 2: e93751
        • Lan NSH
        • Massam BD
        • Kulkarni SS
        • Lang CC
        Pulmonary arterial hypertension: pathophysiology and treatment.
        Diseases. 2018; 6: 38
        • Weidmann B
        • Jansen WC
        • Bock A
        • Assheuer J
        • Tauchert MO
        Technetium-99m-HMPAO brain SPECT in patients with syndrome X.
        Am J Cardiol. 1997; 79: 959-961
        • Pai PY
        • Liu FY
        • Kao A
        • Lin CC
        • Lee CC
        A higher prevalence of abnormal regional cerebral blood flow in patients with syndrome X and abnormal myocardial perfusion.
        Jpn Heart J. 2003; 44: 145-152
        • Sun SS
        • Shiau YC
        • Tsai SC
        • Ho YJ
        • Wang JJ
        • Kao CH
        Cerebral perfusion in patients with syndrome X: a single photon emission computed tomography study.
        J Neuroimaging. 2001; 11: 148-152
        • Karakaya O
        • Koçer A
        • Esen AM
        • Kargin R
        • Barutcu I
        Impaired cerebral circulation in patients with slow coronary flow.
        Tohoku J Exp Med. 2011; 225: 13-16
        • Brunelli C
        • Nobili F
        • Spallarossa P
        • et al.
        Cerebral blood flow reserve in patients with syndrome X.
        Coron Artery Dis. 1996; 7: 587-590
        • Argirò A
        • Sciagrà R
        • Marchi A
        • et al.
        Coronary microvascular function is impaired in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.
        Eur J Neurol. 2021; 28: 3809-3813
        • Lesnik Oberstein SA
        • Jukema JW
        • Van Duinen SG
        • et al.
        Myocardial infarction in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).
        Medicine (Baltimore). 2003; 82: 251-256
        • Wang MM.
        CADASIL.
        Handb Clin Neurol. 2018; 148: 733-743
        • Weiner DE
        • Tighiouart H
        • Elsayed EF
        • et al.
        The Framingham predictive instrument in chronic kidney disease.
        J Am Coll Cardiol. 2007; 50: 217-224
        • Bajaj NS
        • Singh A
        • Zhou W
        • et al.
        Coronary microvascular dysfunction, left ventricular remodeling, and clinical outcomes in patients with chronic kidney impairment.
        Circulation. 2020; 141: 21-33
        • Marini S
        • Georgakis MK
        • Anderson CD
        Interactions between kidney function and cerebrovascular disease: vessel pathology that fires together wires together.
        Front Neurol. 2021; 12785273
      1. Futrakul N, Futrakul P. Renal microvascular disease predicts renal function in diabetes. Ren Fail. 2012;34(1):126-129.

        • Wu L
        • Gokden N
        • Mayeux PR
        Evidence for the role of reactive nitrogrn species in polymicrobial sepsis-induced renal peritubular capillary dysfunction and tubular injury.
        J Am Soc Nephrol. 2007; 18: 1807-1815
        • Nelson AJ
        • Dundon BK
        • Worthley SG
        • et al.
        End-stage renal failure is associated with impaired coronary microvascular function.
        Coron Artery Dis. 2019; 30: 520-527
        • Kashioulis P
        • Guron CW
        • Svensson MK
        • Hammarsten O
        • Saeed A
        • Guron G
        Patients with moderate chronic kidney disease without heart disease have reduced coronary flow velocity reserve.
        ESC Heart Fail. 2020; 7: 2797-2806
        • Mohandas R
        • Segal MS
        • Huo T
        • et al.
        Renal function and coronary microvascular dysfunction in women with symptoms/signs of ischemia.
        PLoS One. 2015; 10e0125374
        • Bozbas H
        • Pirat B
        • Demirtas S
        • et al.
        Evaluation of coronary microvascular function in patients with end-stage renal disease, and renal allograft recipients.
        Atherosclerosis. 2009; 202: 498-504
        • Fukushima K
        • Javadi MS
        • Higuchi T
        • et al.
        Impaired global myocardial flow dynamics despite normal left ventricular function and regional perfusion in chronic kidney disease: a quantitative analysis of clinical 82Rb PET/CT studies.
        J Nucl Med. 2012; 53: 887-893
        • Chade AR
        • Brosh D
        • Higano ST
        • Lennon RJ
        • Lerman LO
        • Lerman A
        Mild renal insufficiency is associated with reduced coronary flow in patients with non-obstructive coronary artery disease.
        Kidney Int. 2006; 69: 266-271
        • Sakamoto N
        • Iwaya S
        • Owada T
        • et al.
        A reduction of coronary flow reserve is associated with chronic kidney disease and long-term cardio-cerebrovascular events in patients with non-obstructive coronary artery disease and vasospasm.
        Fukushima J Med Sci. 2012; 58: 136-143
        • Tsuda N
        • Shiraishi S
        • Sakamoto F
        • et al.
        Quantification of myocardial perfusion reserve using dynamic SPECT images of patients with chronic kidney disease.
        J Cardiol. 2018; 71: 174-180
        • Bezante GP
        • Viazzi F
        • Leoncini G
        • et al.
        Coronary flow reserve is impaired in hypertensive patients with subclinical renal damage.
        Am J Hypertens. 2009; 22: 191-196
        • Imamura S
        • Hirata K
        • Orii M
        • et al.
        Relation of albuminuria to coronary microvascular function in patients with chronic kidney disease.
        Am J Cardiol. 2014; 113: 779-785
        • Akin F
        • Celik O
        • Altun I
        • Ayça B
        Association of glomerular filtration rate with slow coronary flow in patients with normal to mildly impaired renal function.
        Angiology. 2014; 65: 850
        • Yilmaz MB
        • Yalta K
        Coronary flow slows as renal function worsens.
        Clin Cardiol. 2009; 32: 278-282
        • Östlund-Papadogeorgos N
        • Ekenbäck C
        • Jokhaji F
        • et al.
        Blood haemoglobin, renal insufficiency, fractional flow reserve and plasma NT-proBNP is associated with index of microcirculatory resistance in chronic coronary syndrome.
        Int J Cardiol. 2020; 317: 1-6
        • Fujii H
        • Takiuchi S
        • Kawano Y
        • Fukagawa M
        Putative role of asymmetric dimethylarginine in microvascular disease of kidney and heart in hypertensive patients.
        Am J Hypertens. 2008; 21: 650-656
        • Tsiachris D
        • Tsioufis C
        • Dimitriadis K
        • et al.
        Relation of impaired coronary microcirculation to increased urine albumin excretion in patients with systemic hypertension and no epicardial coronary arterial narrowing.
        Am J Cardiol. 2012; 109: 1026-1030
        • Ragosta M
        • Samady H
        • Isaacs RB
        • Gimple LW
        • Sarembock IJ
        • Powers ER
        Coronary flow reserve abnormalities in patients with diabetes mellitus who have end-stage renal disease and normal epicardial coronary arteries.
        Am Heart J. 2004; 147: 1017-1023
        • Jalnapurkar S
        • Landes S
        • Wei J
        • et al.
        Coronary endothelial dysfunction appears to be a manifestation of a systemic process: a report from the Women's Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction (WISE-CVD) study.
        PLoS One. 2021; 16e0257184
        • Akasaka T
        • Yoshida K
        • Hozumi T
        • et al.
        Retinopathy identifies marked restriction of coronary flow reserve in patients with diabetes mellitus.
        J Am Coll Cardiol. 1997; 30: 935-941
        • Sundell J
        • Janatuinen T
        • Rönnemaa T
        • et al.
        Diabetic background retinopathy is associated with impaired coronary vasoreactivity in people with Type 1 diabetes.
        Diabetologia. 2004; 47: 725-731
        • Eslami V
        • Mojahedin S
        • Nourinia R
        • Tabary M
        • Khaheshi I
        Retinal changes in patients with angina pectoris and anginal equivalents: a study of patients with normal coronary angiography.
        Rom J Intern Med. 2021; 59: 174-179
        • Wang Y
        • Wong TY
        • Sharrett R
        • Klein R
        • Folsom AR
        • Jerosch-Herold M
        Relationship between retinal arteriolar narrowing and myocardial perfusion. Multi-Ethnic Study of Atherosclerosis.
        Hypertension. 2008; 51: 119-126
        • Arbel Y
        • Sternfeld A
        • Barak A
        • et al.
        Inverse correlation between coronary and retinal blood flows in patients with normal coronary arteries and slow coronary blood flow.
        Atherosclerosis. 2014; 232: 149-154
        • Liew G
        • Mitchell P
        • Chiha J
        • et al.
        Retinal microvascular changes in microvascular angina: findings from the Australian Heart Eye Study.
        Microcirculation. 2019; 26: e12536
        • Cheung N
        • Bluemke DA
        • Klein R
        • et al.
        Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis.
        J Am Coll Cardiol. 2007; 50: 48-55
        • Prins KW
        • Thenappan T
        WHO group I pulmonary hypertension: epidemiology and pathophysiology.
        Cardiol Clin. 2016; 34: 363-374
        • Haque A
        • Kiely DG
        • Kovacs G
        • Thompson AAR
        • Condliffe R
        Pulmonary hypertension phenotypes in patients with systemic sclerosis.
        Eur Respir Rev. 2021; 30210053
        • Komocsi A
        • Pinter T
        • Faludi R
        • et al.
        Overlap of coronary disease and pulmonary arterial hypertension in systemic sclerosis.
        Ann Rheum Dis. 2010; 69: 202-205
        • Vogel-Claussen J
        • Skrok J
        • Shehata ML
        • et al.
        Right and left ventricular myocardial perfusion reserves correlate with right ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension.
        Radiology. 2011; 258: 119-127
        • Zhao M
        • Liu M
        • Leal JP
        • et al.
        Association of PET-measured myocardial flow reserve with echocardiography-estimated pulmonary artery systolic pressure in patients with hypertrophic cardiomyopathy.
        PLoS One. 2019; 14e0212573
        • Raman KS
        • Stokes M
        • Walls A
        • et al.
        Feasibility of oxygen sensitive cardiac magnetic resonance of the right ventricle in pulmonary hypertension.
        Cardiovasc Diagn Ther. 2019; 9: 502-512
        • Raman KS
        • Shah R
        • Stokes M
        • et al.
        Left ventricular ischemia in pre-capillary pulmonary hypertension: a cardiovascular magnetic resonance study.
        Cardiovasc Diagn Ther. 2020; 10: 1280-1292
        • Raman KS
        • Shad R
        • Stokes M
        • et al.
        Right ventricular myocardial deoxygenation in patients with pulmonary artery hypertension.
        J Cardiovacs Magn Reson. 2021; 23: 22
        • Ahmad A
        • Corban MT
        • Toya T
        • et al.
        Coronary microvascular endothelial dysfunction in patients with angina and nonobstructive coronary artery disease is associated with elevated serum homocysteine levels.
        J Am Heart Assoc. 2020; 9e017746
        • Odaka Y
        • Takahashi J
        • Tsuburaya R
        • et al.
        Plasma concentration of serotonin is a novel biomarker for coronary microvascular dysfunction in patients with suspected angina and unobstructive coronary arteries.
        Eur Heart J. 2017; 38: 489-496
        • Nowroozpoor A
        • Gutterman D
        • Safdar B
        Is microvascular dysfunction a systemic disorder with common biomarkers found in the heart, brain, and kidneys? - A scoping review.
        Microvasc Res. 2021; 134104123
        • Baylis C
        Nitric oxide deficiency in chronic kidney disease.
        Am J Physiol Renal Physiol. 2008; 294: F1-F9
        • Ford TJ
        • Rocchiccioli P
        • Good R
        • et al.
        Systemic microvascular dysfunction in microvascular and vasospastic angina.
        Eur Heart J. 2018; 39: 4086-4097
        • Saygin D
        • Highland K
        • Tonelli AR
        Microvascular involvement in systemic sclerosis and systemic lupus erythematosus.
        Microcirculation. 2019; 26: e12440
        • Langer C
        • Adukauskaite A
        • Plank F
        • Feuchtner G
        • Cartes-Zumelzu F
        Cerebral Autosomal Dominant Arteriopathy (CADASIL) with Cardiac Involvement (ANOCA) and subcortical leukencephalopathy.
        J Cardiovasc Comput Tomogr. 2020; 14: e1-e6
        • Rubin CB
        • Hahn V
        • Kobayashi T
        • Litwack A
        A report of accelerated coronary artery disease associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.
        Case Rep Cardiol. 2015; 2015167513
        • Chan B
        • Adam DN
        A review of Fabry disease.
        Skin Therapy Lett. 2018; 23: 4-6
        • Elliott PM
        • Kindler H
        • Shah JS
        • et al.
        Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A.
        Heart. 2006; 92: 357-360
        • Søndergaard CB
        • Nielsen JE
        • Hansen CK
        • Christensen H
        Hereditary cerebral small vessel disease and stroke.
        Clin Neurol Neurosurg. 2017; 155: 45-57
        • Toyoda K
        Cerebral small vessel disease and chronic kidney disease.
        J Stroke. 2015; 17: 31-37