Advertisement

A Comprehensive Cardiovascular-Renal-Metabolic Risk Reduction Approach to Patients with Type 2 Diabetes Mellitus

      Abstract

      Despite decades of research into risk-reduction strategies, cardiovascular disease and renal disease remain leading causes of morbidity and mortality among patients with type 2 diabetes mellitus. Given the tight clustering of cardiovascular and renal disease with the metabolic abnormalities of type 2 diabetes mellitus, we can think of these conditions together as cardiovascular-renal-metabolic disease states. A holistic view of cardiovascular-renal-metabolic disease states is critical to provide integrated patient-centered care to individuals with these disease states. Here, we explore the cardiovascular and renal risks associated with type 2 diabetes mellitus and highlight the importance of reducing cardiovascular-renal-metabolic disease risk in a comprehensive manner. We advocate a cross-disciplinary, team-based model to manage cardiovascular-renal-metabolic disease risk among patients with type 2 diabetes mellitus.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Diabetes Association
        10. Cardiovascular disease and risk management: standards of medical care in diabetes-2020.
        Diabetes Care. 2020; 43: S111-S134
        • American Diabetes Association
        Economic costs of diabetes in the U.S. in 2017.
        Diabetes Care. 2018; 41: 917-928
        • Seshasai SRK
        • Kaptoge S
        • Thompson A
        • et al.
        Diabetes mellitus, fasting glucose, and risk of cause-specific death.
        N Engl J Med. 2011; 364: 829-841
        • Low Wang CC
        • Hess CN
        • Hiatt WR
        • Goldfine AB
        Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations.
        Circulation. 2016; 133: 2459-2502
        • Shah AD
        • Langenberg C
        • Rapsomaniki E
        • et al.
        Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people.
        Lancet Diabetes Endocrinol. 2015; 3: 105-113
        • de Boer IH
        • Rue TC
        • Hall YN
        • Heagerty PJ
        • Weiss NS
        • Himmelfarb J.
        Temporal trends in the prevalence of diabetic kidney disease in the United States.
        JAMA. 2011; 305: 2532-2539
        • Fox CS
        • Matsushita K
        • Woodward M
        • et al.
        Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis.
        Lancet. 2012; 380: 1662-1673
        • Sarwar N
        • Gao P
        • et al.
        • Emerging Risk Factors Collaboration
        Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies.
        Lancet. 2010; 375: 2215-2222
        • Bulugahapitiya U
        • Siyambalapitiya S
        • Sithole J
        • Idris I.
        Is diabetes a coronary risk equivalent? Systematic review and meta-analysis.
        Diabet Med. 2009; 26: 142-148
        • Rana JS
        • Liu JY
        • Moffet HH
        • Jaffe M
        • Karter AJ.
        Diabetes and prior coronary heart disease are not necessarily risk equivalent for future coronary heart disease events.
        J Gen Intern Med. 2016; 31: 387-393
        • Haffner SM.
        Coronary heart disease in patients with diabetes.
        N Engl J Med. 2000; 342: 1040-1042
        • Echouffo-Tcheugui JB
        • Xu H
        • Matsouaka RA
        • et al.
        Diabetes and long-term outcomes of ischaemic stroke: findings from Get With The Guidelines-Stroke.
        Eur Heart J. 2018; 39: 2376-2386
        • Jia Q
        • Zhao X
        • Wang C
        • et al.
        Diabetes and poor outcomes within 6 months after acute ischemic stroke: the China National Stroke Registry.
        Stroke. 2011; 42: 2758-2762
        • Kannel WB
        • Hjortland M
        • Castelli WP.
        Role of diabetes in congestive heart failure: the Framingham study.
        Am J Cardiol. 1974; 34: 29-34
        • Bell DS.
        Diabetic cardiomyopathy.
        Diabetes Care. 2003; 26: 2949-2951
        • McMurray JJ
        • Gerstein HC
        • Holman RR
        • Pfeffer MA.
        Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored.
        Lancet Diabetes Endocrinol. 2014; 2: 843-851
        • Nichols GA
        • Gullion CM
        • Koro CE
        • Ephross SA
        • Brown JB.
        The incidence of congestive heart failure in type 2 diabetes: an update.
        Diabetes Care. 2004; 27: 1879-1884
        • Rosengren A
        • Edqvist J
        • Rawshani A
        • et al.
        Excess risk of hospitalisation for heart failure among people with type 2 diabetes.
        Diabetologia. 2018; 61: 2300-2309
        • Dauriz M
        • Mantovani A
        • Bonapace S
        • et al.
        Prognostic impact of diabetes on long-term survival outcomes in patients with heart failure: a meta-analysis.
        Diabetes Care. 2017; 40: 1597-1605
        • Criqui MH
        • Aboyans V.
        Epidemiology of peripheral artery disease.
        Circ Res. 2015; 116: 1509-1526
        • Marso SP
        • Hiatt WR.
        Peripheral arterial disease in patients with diabetes.
        J Am Coll Cardiol. 2006; 47: 921-929
        • Barnes JA
        • Eid MA
        • Creager MA
        • Goodney PP.
        Epidemiology and risk of amputation in patients with diabetes mellitus and peripheral artery disease.
        Arterioscler Thromb Vasc Biol. 2020; 40: 1808-1817
        • American Diabetes Association
        11. Microvascular complications and foot care: standards of medical care in diabetes-2020.
        Diabetes Care. 2020; 43: S135-S151
        • Afkarian M
        • Zelnick LR
        • Hall YN
        • et al.
        Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014.
        JAMA. 2016; 316: 602-610
        • Maqbool M
        • Cooper ME
        • Jandeleit-Dahm KAM.
        Cardiovascular disease and diabetic kidney disease.
        Semin Nephrol. 2018; 38: 217-232
        • Longenecker JC
        • Coresh J
        • Powe NR
        • et al.
        Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE Study.
        J Am Soc Nephrol. 2002; 13: 1918-1927
        • American Diabetes Association
        5. Facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes-2020.
        Diabetes Care. 2020; 43: S48-S65
        • American Diabetes Association
        8. Obesity management for the treatment of type 2 diabetes: standards of medical care in diabetes-2020.
        Diabetes Care. 2020; 43: S89-S97
        • Colberg SR
        • Sigal RJ
        • Yardley JE
        • et al.
        Physical activity/exercise and diabetes: a position statement of the American Diabetes Association.
        Diabetes Care. 2016; 39: 2065-2079
        • Cosentino F
        • Grant PJ
        • Aboyans V
        • et al.
        2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD.
        Eur Heart J. 2020; 41: 255-323
        • Arnett DK
        • Blumenthal RS
        • Albert MA
        • et al.
        2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.
        J Am Coll Cardiol. 2019; 74: e177-e232
        • Emdin CA
        • Rahimi K
        • Neal B
        • Callender T
        • Perkovic V
        • Patel A.
        Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis.
        JAMA. 2015; 313: 603-615
        • Ettehad D
        • Emdin CA
        • Kiran A
        • et al.
        Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis.
        Lancet. 2016; 387: 957-967
        • Brunstrom M
        • Carlberg B.
        Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses.
        BMJ. 2016; 352: i717
        • Kearney PM
        • Blackwell L
        • et al.
        • Cholesterol Treatment Trialists (CTT) Collaborators
        Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis.
        Lancet. 2008; 371: 117-125
        • Grundy SM
        • Stone NJ
        • Bailey AL
        • et al.
        2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.
        Circulation. 2019; 139: e1082-e1143
        • Holman RR
        • Paul SK
        • Bethel MA
        • Matthews DR
        • Neil HA.
        10-year follow-up of intensive glucose control in type 2 diabetes.
        N Engl J Med. 2008; 359: 1577-1589
        • Macisaac RJ
        • Jerums G.
        Intensive glucose control and cardiovascular outcomes in type 2 diabetes.
        Heart Lung Circ. 2011; 20: 647-654
        • Ray KK
        • Seshasai SR
        • Wijesuriya S
        • et al.
        Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials.
        Lancet. 2009; 373: 1765-1772
        • Zoungas S
        • Arima H
        • Gerstein HC
        • et al.
        Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials.
        Lancet Diabetes Endocrinol. 2017; 5: 431-437
        • Group AC
        • Patel A
        • MacMahon S
        • et al.
        Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2008; 358: 2560-2572
        • Rawshani A
        • Rawshani A
        • Franzen S
        • et al.
        Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2018; 379: 633-644
        • Pagidipati NJ
        • Navar AM
        • Pieper KS
        • et al.
        Secondary prevention of cardiovascular disease in patients with type 2 diabetes mellitus: international insights from the TECOS Trial (trial evaluating cardiovascular outcomes with sitagliptin).
        Circulation. 2017; 136: 1193-1203
        • Gaede P
        • Vedel P
        • Parving HH
        • Pedersen O.
        Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study.
        Lancet. 1999; 353: 617-622
        • Gaede P
        • Vedel P
        • Larsen N
        • Jensen GV
        • Parving HH
        • Pedersen O.
        Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.
        N Engl J Med. 2003; 348: 383-393
        • Gaede P
        • Oellgaard J
        • Carstensen B
        • et al.
        Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the STENO-2 randomised trial.
        Diabetologia. 2016; 59: 2298-2307
        • Zinman B
        • Wanner C
        • Lachin JM
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Wanner C
        • Inzucchi SE
        • Lachin JM
        • et al.
        Empagliflozin and progression of kidney disease in type 2 diabetes.
        N Engl J Med. 2016; 375: 323-334
        • Neal B
        • Perkovic V
        • Matthews DR.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 2099
        • Wiviott SD
        • Raz I
        • Bonaca MP
        • et al.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357
        • Perkovic V
        • Jardine MJ
        • Neal B
        • et al.
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N Engl J Med. 2019; 380: 2295-2306
        • Cannon CP
        • Pratley R
        • Dagogo-Jack S
        • et al.
        Cardiovascular outcomes with ertugliflozin in type 2 diabetes.
        N Engl J Med. 2020; 383: 1425-1435
        • Bhatt DL
        • Szarek M
        • Steg PG
        • et al.
        Sotagliflozin in patients with diabetes and recent worsening heart failure.
        N Engl J Med. 2021; 384: 117-128
        • Bhatt DL
        • Szarek M
        • Pitt B
        • et al.
        Sotagliflozin in patients with diabetes and chronic kidney disease.
        N Engl J Med. 2021; 384: 129-139
        • McGuire DK
        • Shih WJ
        • Cosentino F
        • et al.
        Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis.
        JAMA Cardiol. 2021; 6: 148-158
        • Vasilakou D
        • Karagiannis T
        • Athanasiadou E
        • et al.
        Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis.
        Ann Intern Med. 2013; 159: 262-274
        • Pereira MJ
        • Eriksson JW.
        Emerging role of SGLT-2 inhibitors for the treatment of obesity.
        Drugs. 2019; 79: 219-230
        • McMurray JJV
        • Solomon SD
        • Inzucchi SE
        • et al.
        Dapagliflozin in patients with heart failure and reduced ejection fraction.
        N Engl J Med. 2019; 381: 1995-2008
        • Packer M
        • Anker SD
        • Butler J
        • et al.
        Cardiovascular and renal outcomes with empagliflozin in heart failure.
        N Engl J Med. 2020; 383: 1413-1424
        • Heerspink HJL
        • Stefansson BV
        • Correa-Rotter R
        • et al.
        Dapagliflozin in patients with chronic kidney disease.
        N Engl J Med. 2020; 383: 1436-1446
        • Herrington WG
        • Preiss D
        • Haynes R
        • et al.
        The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study.
        Clin Kidney J. 2018; 11: 749-761
        • Anker SD
        • Butler J
        • Filippatos GS
        • et al.
        Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial.
        Eur J Heart Fail. 2019; 21: 1279-1287
      1. ClinicalTrials.gov, U.S. National Library of Medicine. Dapagliflozin evaluation to improve the lives of patients with preserved ejection fraction heart failure (DELIVER). Available at: https://clinicaltrials.gov/ct2/show/NCT03619213. Accessed June 9, 2021.

        • Trujillo JM
        • Nuffer W
        • Ellis SL.
        GLP-1 receptor agonists: a review of head-to-head clinical studies.
        Ther Adv Endocrinol Metab. 2015; 6: 19-28
        • Pfeffer MA
        • Claggett B
        • Diaz R
        • et al.
        Lixisenatide in patients with type 2 diabetes and acute coronary syndrome.
        N Engl J Med. 2015; 373: 2247-2257
        • Muskiet MHA
        • Tonneijck L
        • Huang Y
        • et al.
        Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial.
        Lancet Diabetes Endocrinol. 2018; 6: 859-869
        • Marso SP
        • Daniels GH
        • Brown-Frandsen K
        • et al.
        Liraglutide and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2016; 375: 311-322
        • Mann JFE
        • Orsted DD
        • Buse JB.
        Liraglutide and renal outcomes in type 2 diabetes.
        N Engl J Med. 2017; 377: 2197-2198
        • Marso SP
        • Bain SC
        • Consoli A
        • et al.
        Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2016; 375: 1834-1844
        • Holman RR
        • Bethel MA
        • Mentz RJ
        • et al.
        Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2017; 377: 1228-1239
        • Bethel MA
        • Mentz RJ
        • Merrill P
        • et al.
        Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: insights from the EXSCEL trial.
        Diabetes Care. 2020; 43: 446-452
        • Hernandez AF
        • Green JB
        • Janmohamed S
        • et al.
        Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial.
        Lancet. 2018; 392: 1519-1529
        • Gerstein HC
        • Colhoun HM
        • Dagenais GR
        • et al.
        Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial.
        Lancet. 2019; 394: 131-138
        • Gerstein HC
        • Colhoun HM
        • Dagenais GR
        • et al.
        Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial.
        Lancet. 2019; 394: 121-130
        • Husain M
        • Birkenfeld AL
        • Donsmark M
        • et al.
        Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2019; 381: 841-851
        • Kristensen SL
        • Rorth R
        • Jhund PS
        • et al.
        Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.
        Lancet Diabetes Endocrinol. 2019; 7: 776-785
        • Das SR
        • Everett BM
        • Birtcher KK
        • et al.
        2020 expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: a report of the American College of Cardiology Solution Set Oversight Committee.
        J Am Coll Cardiol. 2020; 76: 1117-1145
        • Davies MJ
        • D'Alessio DA
        • Fradkin J
        • et al.
        Management of hyperglycemia in type 2 diabetes, 2018. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).
        Diabetes Care. 2018; 41: 2669-2701
        • Aroda VR
        • Ahmann A
        • Cariou B
        • et al.
        Comparative efficacy, safety, and cardiovascular outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2 diabetes: Insights from the SUSTAIN 1-7 trials.
        Diabetes Metab. 2019; 45: 409-418
        • Meier JJ.
        GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus.
        Nat Rev Endocrinol. 2012; 8: 728-742
        • Donath MY
        • Burcelin R.
        GLP-1 effects on islets: hormonal, neuronal, or paracrine?.
        Diabetes Care. 2013; 36: S145-S148
        • Rangaswami J
        • Bhalla V
        • de Boer IH
        • et al.
        Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: a scientific statement from the American Heart Association.
        Circulation. 2020; 142: e265-e286
        • Wong ND
        • Patao C
        • Wong K
        • Malik S
        • Franklin SS
        • Iloeje U.
        Trends in control of cardiovascular risk factors among US adults with type 2 diabetes from 1999 to 2010: comparison by prevalent cardiovascular disease status.
        Diab Vasc Dis Res. 2013; 10: 505-513
        • Nelson AJ
        • Ardissino M
        • Haynes K
        • et al.
        Gaps in evidence-based therapy use in insured patients in the united states with type 2 diabetes mellitus and atherosclerotic cardiovascular disease.
        J Am Heart Assoc. 2021; 10e016835