Advertisement

Strategies of Unloading the Failing Heart from Metabolic Stress

Published:September 11, 2019DOI:https://doi.org/10.1016/j.amjmed.2019.08.035

      Abstract

      We propose a unifying perspective of heart failure in patients with type 2 diabetes mellitus. The reasoning is as follows: cellular responses to fuel overload include dysregulated insulin signaling, impaired mitochondrial respiration, reactive oxygen species formation, and the accumulation of certain metabolites, collectively termed glucolipotoxicity. As a consequence, cardiac function is impaired, with intracellular calcium cycling and diastolic dysfunction as an early manifestation. In this setting, increasing glucose uptake by insulin or insulin sensitizing agents only worsens the disrupted fuel homeostasis of the heart. Conversely, restricting fuel supply by means of caloric restriction, surgical intervention, or certain pharmacologic agents will improve cardiac function by restoring metabolic homeostasis. The concept is borne out by clinical interventions, all of which unload the heart from metabolic stress.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Taegtmeyer H
        • McNulty P
        • Young M
        Adaptation and maladaptation of the heart in diabetes: part I general concepts.
        Circulation. 2002; 105: 1727-1733
        • Young ME
        • McNulty P
        • Taegtmeyer H
        Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms.
        Circulation. 2002; 105: 1861-1870
        • Maack C
        • Lehrke M
        • Backs J
        • et al.
        Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology.
        Eur Heart J. 2018; 39: 4243-4254
        • Taegtmeyer H
        • Hems R
        • Krebs HA
        Utilization of energy-providing substrates in the isolated working rat heart.
        Biochem J. 1980; 186: 701-711
        • Bertrand L
        • Horman S
        • Beauloye C
        • Vanoverschelde JL
        Insulin signalling in the heart.
        Cardiovasc Res. 2008; 79: 238-248
      1. Bing RJ.The metabolism of the heart. Harvey Lect 1954-1955;50:27–70.

        • Sharma S
        • Adrogue JV
        • Golfman L
        • et al.
        Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart.
        FASEB J. 2004; 18: 1692-1700
        • Randle PJ
        • Garland PB
        • Hales CN
        • Newsholme EA
        The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.
        Lancet. 1963; 1: 785-789
        • Sohal RS
        • Weindruch R
        Oxidative stress, caloric restriction, and aging.
        Science. 1996; 273: 59-63
        • Leichman JG
        • Wilson EB
        • Scarborough T
        • et al.
        Dramatic reversal of derangements in muscle metabolism and left ventricular function after bariatric surgery.
        Am J Med. 2008; 121: 966-973
        • Aguilar D
        • Chan W
        • Bozkurt B
        • Ramasubbu K
        • Deswal A
        Metformin use and mortality in ambulatory patients with diabetes and heart failure.
        Circ Heart Fail. 2011; 4: 53-58
        • Dunlay SM
        • Givertz MM
        • Aguilar D
        • et al.
        Type 2 diabetes mellitus and heart failure: a scientific statement from the American Heart Association and the Heart Failure Society of America: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update.
        Circulation. 2019; 140: e294-e324
        • Zelniker TA
        • Braunwald E.
        Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review.
        J Am Coll Cardiol. 2018; 72: 1845-1855
        • Schenk S
        • Saberi M
        • Olefsky JM
        Insulin sensitivity: modulation by nutrients and inflammation.
        J Clin Invest. 2008; 118: 2992-3002
        • Hue L
        • Taegtmeyer H.
        The Randle cycle revisited: a new head for an old hat.
        Am J Physiol Endocrinol Metab. 2009; 297: E578-E591
        • Berg TJ
        • Snorgaard O
        • Faber J
        • et al.
        Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes.
        Diabetes Care. 1999; 22: 1186-1190
        • Dillmann WH.
        Diabetes mellitus induces changes in cardiac myosin of the rat.
        Diabetes. 1980; 29: 579-582
        • Razeghi P
        • Young ME
        • Cockrill TC
        • Frazier OH
        • Taegtmeyer H
        Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure.
        Circulation. 2002; 106: 407-411
        • Labbé SM
        • Grenier-Larouche T
        • Noll C
        • et al.
        Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans.
        Diabetes. 2012; 61: 2701-2710
        • Kraegen EW
        • Saha AK
        • Preston E
        • et al.
        Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats.
        Am J Physiol Endocrinol Metab. 2006; 290: E471-E479
        • Hoehn KL
        • Salmon AB
        • Hohnen-Behrens C
        • et al.
        Insulin resistance is a cellular antioxidant defense mechanism.
        Proc Natl Acad Sci USA. 2009; 106: 17787-17792
        • Harmancey R
        • Lam TN
        • Lubrano GM
        • Guthrie PH
        • Vela D
        • Taegtmeyer H
        Insulin resistance improves metabolic and contractile efficiency in stressed rat heart.
        FASEB J. 2012; 26: 3118-3126
      2. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.
        Lancet. 1998; 352: 837-853
        • Gerstein HC
        • Bosch J
        • Dagenais GR
        • et al.
        Basal insulin and cardiovascular and other outcomes in dysglycemia.
        N Engl J Med. 2012; 367: 319-328
        • Holman RR
        • Paul SK
        • Bethel MA
        • Matthews DR
        • Neil HA
        10-year follow-up of intensive glucose control in type 2 diabetes.
        N Engl J Med. 2008; 359: 1577-1589
        • Gerstein HC
        • Miller ME
        • et al.
        • Action to Control Cardiovascular Risk in Diabetes Study Group
        Effects of intensive glucose lowering in type 2 diabetes.
        N Engl J Med. 2008; 358: 2545-2559
        • Aguilar D
        • Bozkurt B
        • Ramasubbu K
        • Deswal A
        Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes.
        J Am Coll Cardiol. 2009; 54: 422-428
        • Eldor R
        • DeFronzo RA
        • Abdul-Ghani M
        In vivo actions of peroxisome proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion.
        Diabetes Care. 2013; 36: S162-S174
        • Lago RM
        • Singh PP
        • Nesto RW
        Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials.
        Lancet. 2007; 370: 1129-1136
        • Liao HW
        • Saver JL
        • Wu YL
        • Chen TH
        • Lee M
        • Ovbiagele B
        Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: a systematic review and meta-analysis.
        BMJ Open. 2017; 7e013927
        • Khalaf KI
        • Taegtmeyer H
        After avandia: the use of antidiabetic drugs in patients with heart failure.
        Tex Heart Inst J. 2012; 39: 174-178
        • Dargie HJ
        • Hildebrandt PR
        • Riegger GA
        • et al.
        A randomized, placebo-controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association Functional Class I or II Heart Failure.
        J Am Coll Cardiol. 2007; 49: 1696-1704
        • Goodrick CL
        • Ingram DK
        • Reynolds MA
        • Freeman JR
        • Cider NL
        Effects of intermittent feeding upon growth and life span in rats.
        Gerontology. 1982; 28: 233-241
        • Sohal RS
        • Weindruch R
        Oxidative stress, caloric restriction, and aging.
        Science. 1996; 273: 59-63
        • Turnbaugh PJ
        • Ley RE
        • Mahowald MA
        • Magrini V
        • Mardis ER
        • Gordon JI
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Sanz A
        • Caro P
        • Ibanez J
        • Gomez J
        • Gredilla R
        • Barja G
        Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain.
        J Bioenerg Biomembr. 2005; 37: 83-90
        • Meyer TE
        • Kovacs SJ
        • Ehsani AA
        • Klein S
        • Holloszy JO
        • Fontana L
        Long-term caloric restriction ameliorates the decline in diastolic function in humans.
        J Am Coll Cardiol. 2006; 47: 398-402
        • Sherman H
        • Frumin I
        • Gutman R
        • et al.
        Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers.
        J Cell Mol Med. 2011; 15: 2745-2759
        • Sherman H
        • Genzer Y
        • Cohen R
        • Chapnik N
        • Madar Z
        • Froy O
        Timed high-fat diet resets circadian metabolism and prevents obesity.
        FASEB J. 2012; 26: 3493-3502
        • Rothschild J
        • Hoddy KK
        • Jambazian P
        • Varady KA
        Time-restricted feeding and risk of metabolic disease: A review of human and animal studies.
        Nutr Rev. 2014; 72: 308-318
        • Wan R
        • Camandola S
        • Mattson MP
        Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats.
        J Nutr. 2003; 133: 1921-1929
        • Katare RG
        • Kakinuma Y
        • Arikawa M
        • Yamasaki F
        • Sato T
        Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway.
        J Mol Cell Cardiol. 2009; 46: 405-412
        • Joslin EP.
        The treatment of diabetes mellitus.
        Can Med Assoc J. 1916; 6: 673-684
        • Taylor R.
        Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause.
        Diabetologia. 2008; 51: 1781-1789
        • Lim EL
        • Hollingsworth KG
        • Aribisala BS
        • Chen MJ
        • Mathers JC
        • Taylor R
        Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol.
        Diabetologia. 2011; 54: 2506-2514
        • Takatsu M
        • Nakashima C
        • Takahashi K
        • et al.
        Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.
        Hypertension. 2013; 62: 957-965
        • Hammer S
        • Snel M
        • Lamb HJ
        • et al.
        Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function.
        J Am Coll Cardiol. 2008; 52: 1006-1012
        • Algahim MF
        • Sen S
        • Taegtmeyer H
        Bariatric surgery to unload the stressed heart: a metabolic hypothesis.
        Am J Physiol Heart Circ Physiol. 2012; 302: H1539-H1545
        • Aron-Wisnewsky J
        • Clement K.
        The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity.
        Curr Atheroscler Rep. 2014; 16: 454
        • Spinelli V
        • Lalloyer F
        • Baud G
        • et al.
        Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans.
        Int J Obes (Lond). 2016; 40: 1260-1267
        • Evers SS
        • Sandoval DA
        • Seeley RJ
        The physiology and molecular underpinnings of the effects of bariatric surgery on obesity and diabetes.
        Annu Rev Physiol. 2017; 79: 313-334
        • Tremaroli V
        • Karlsson F
        • Werling M
        • et al.
        Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation.
        Cell Metab. 2015; 22: 228-238
        • Leichman JG
        • Aguilar D
        • King TM
        • Vlada A
        • Reyes M
        • Taegtmeyer H
        Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity.
        Am J Clin Nutr. 2006; 84: 336-341
        • Leichman JG
        • Wilson EB
        • Scarborough T
        • et al.
        Dramatic reversal of derangements in muscle metabolism and left ventricular function after bariatric surgery.
        Am J Med. 2008; 121: 966-973
        • Algahim MF
        • Lux TR
        • Leichman JG
        • et al.
        Progressive regression of left ventricular hypertrophy two years after bariatric surgery.
        Am J Med. 2010; 123: 549-555
        • Schauer PR
        • Bhatt DL
        • Kirwan JP
        • et al.
        Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes.
        N Engl J Med. 2017; 376: 641-651
        • Sundstrom J
        • Bruze G
        • Ottosson J
        • Marcus C
        • Naslund I
        • Neovius M
        Weight loss and heart failure: a nationwide study of gastric bypass surgery versus intensive lifestyle treatment.
        Circulation. 2017; 135: 1577-1585
        • Shimada YJ
        • Tsugawa Y
        • Brown DF
        • Hasegawa K
        Bariatric surgery and emergency department visits and hospitalizations for heart failure exacerbation: population-based, self-controlled series.
        J Am Coll Cardiol. 2016; 67: 895-903
        • Stumvoll M
        • Nurjhan N
        • Perriello G
        • Dailey G
        • Gerich JE
        Metabolic effects of metformin in non-insulin-dependent diabetes mellitus.
        N Engl J Med. 1995; 333: 550-554
        • Foretz M
        • Hebrard S
        • Leclerc J
        • et al.
        Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.
        J Clin Invest. 2010; 120: 2355-2369
        • Duca FA
        • Cote CD
        • Rasmussen BA
        • et al.
        Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats.
        Nat Med. 2015; 21: 506-511
        • Buse JB
        • DeFronzo RA
        • Rosenstock J
        • et al.
        The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies.
        Diabetes Care. 2016; 39: 198-205
        • Roumie CL
        • Min JY
        • D'Agostino McGowan L
        • et al.
        Comparative safety of sulfonylurea and metformin monotherapy on the risk of heart failure: a cohort study.
        J Am Heart Assoc. 2017 Apr 19; 6https://doi.org/10.1161/JAHA.116.005379
        • Eurich DT
        • Weir DL
        • Majumdar SR
        • et al.
        Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients.
        Circ Heart Fail. 2013; 6: 395-402
        • Andersson C
        • Sogaard P
        • Hoffmann S
        • et al.
        Metformin is associated with improved left ventricular diastolic function measured by tissue Doppler imaging in patients with diabetes.
        Eur J Endocrinol. 2010; 163: 593-599
        • Orskov C
        • Poulsen SS
        • Moller M
        • Holst JJ
        Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I.
        Diabetes. 1996; 45: 832-835
        • Drucker DJ
        • Nauck MA.
        The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes.
        Lancet. 2006; 368: 1696-1705
        • Saponaro F
        • Sonaglioni A
        • Rossi A
        • et al.
        Improved diastolic function in type 2 diabetes after a six month liraglutide treatment.
        Diabetes Res Clin Pract. 2016; 118: 21-28
        • Marso SP
        • Daniels GH
        • Brown-Frandsen K
        • et al.
        Liraglutide and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2016; 375: 311-322
        • Monji A
        • Mitsui T
        • Bando YK
        • Aoyama M
        • Shigeta T
        • Murohara T
        Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes.
        Am J Physiol Heart Circ Physiol. 2013; 305: H295-H304
        • Jorsal A
        • Kistorp C
        • Holmager P
        • et al.
        Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial.
        Eur Heart J. 2017; 19: 69-77
        • Margulies KB
        • Hernandez AF
        • Redfield MM
        • et al.
        Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction.
        JAMA. 2016; 316: 500-508
        • Mannucci E
        • Mosenzon O
        • Avogaro A
        Analyses of results from cardiovascular safety trials with DPP-4 inhibitors: cardiovascular outcomes, predefined safety outcomes, and pooled analysis and meta-analysis.
        Diabetes Care. 2016; 39: S196-S204
        • Zinman B
        • Wanner C
        • Lachin JM
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Wiviott SD
        • Raz I
        • Bonaca MP
        • et al.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357
        • Neal B
        • Perkovic V
        • Mahaffey KW
        • et al.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Verma S
        • Garg A
        • Yan AT
        • et al.
        Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial?.
        Diabetes Care. 2016; 39: e212-e213