A Case of Pica-like, Nutrient-induced, Severe Iron-deficiency Anemia

To the Editor:

Data from the Third National Health and Nutrition Examination Survey (1988-1994) indicate that iron deficiency is present in 1% to 2% of adults in industrialized countries. Foods and medications can impair iron absorption. We recently observed a patient with severe iron-deficient anemia mimicking impaired iron absorption in the absence of gastrointestinal pathology.

CASE SUMMARY

A 44-year-old woman was referred to our outpatient clinic because of recurrent symptoms of iron deficiency. One year

Funding: None.

Conflict of Interest: None.

Authorship: All authors had access to the data and played a role in writing this manuscript.

Requests for reprints should be addressed to Peter Schnuelle, MD, PhD, Academic Postgraduate Training Practice, c/o University Medical Centre Mannheim, Centre for Renal Disease Weinheim, Roentgenstrasse 1, D 69469 Weinheim.

E-mail address: p.schnuelle@nierenzentrum-weinheim.de

ago, she was treated with oral iron (100 mg/d) because of severe iron-deficiency anemia with a hemoglobin level of 7.0 g/dL. Guaiac-based fecal occult blood test results were negative. Endoscopies of the whole gastrointestinal tract, including a small bowel biopsy for exclusion of celiac disease, revealed no abnormalities. A gynecologic examination excluded uterine bleeding. Oral iron therapy was terminated after remission of symptoms 3 months later when hemoglobin had increased to 14.6 g/dL. Nonetheless, reviewing the patient's file suggested that repletion of her iron stores was not yet accomplished at that time.

On referral, she reported fatigue, headache, a burning tongue, and exercise intolerance. She appeared to be in a normal nutritional condition. Her skin was pale, and inspection of her oral cavity revealed atrophic glossitis. Pulse rate and blood pressure were normal. Blood tests indicated a hemoglobin level of 10.0 g/dL with a low mean cell volume (70 fl) and a low mean corpuscular hemoglobin (21 pg). Erythrocyte count was not decreased (4.8×10^{12} /L), suggesting long-lasting iron-deficient hemostasis rather than bleeding. The most recent laboratory values of serum iron, transferrin saturation, ferritin, and blood counts are shown in **Table 1**.

When asked about her food pattern, our patient recounted a daily intake of 100 to 150 g of blue raisins for more than 2 years. She craved sweet raisins because she was doing

Table 1	Blood (Count and	Biochemical	Laboratory	Findings
Iante 1	bloou v	count and	Diochemical	Laburatury	1 IIIuIIIuS

	May 23, 2013 3 Weeks After Definite Cessation of Raisin Consumption	May 3, 2013 1 Week After Reexposure to Raisins	April 26, 2013 1 Week After Cessation of Raisin Consumption
CRP, mg/dL		<0.5	<0.5
Hemoglobin, g/dL	12.2	10.1	10.0
Erythrocytes, ×10 ¹² /L	5.2	4.7	4.8
Mean cell volume, fl	76	71	70
Mean corpuscular hemoglobin, pg	23	21	21
Hematocrit, %	40	33	33
Reticulocytes, %	0.9	1.0	2.9
Leukocytes, ×10 ⁹ /L	4.6	4.3	4.0
Platelets, ×10 ⁹ /L	262	366	297
Serum iron, μg/dL	17	11	15
Transferrin, mg/dL	315	322	335
Transferrin saturation, %	7	4	4
Ferritin, ng/mL	17	11	15
Oral iron absorption test			
Serum iron at 1 h, μg/dL		178	165
Serum iron at 2 h, μg/dL		168	313

 $\mathsf{CRP} = \mathsf{C}\text{-reactive protein.}$

regular endurance training. After cessation of raisin intake for 1 week, an oral iron absorption test using 225 mg of iron(II)-glycine-sulfate (equivalent to 40 mg of Fe²⁺) revealed no abnormalities. Thereafter, she was requested to continue with her previous food pattern, and enteric iron absorption was reexamined 1 week later after daily ingestion of 100 to 150 g of blue raisins. The oral absorption test at that time indicated a markedly lower serum iron at 2 hours. In addition, reticulocyte count decreased during reexposure to raisins, whereas the degree of iron-deficiency anemia was similar. Three weeks after definite cessation of raisin consumption, anemia had resolved to subnormal hemoglobin levels without any oral iron supplementation (Table 1).

DISCUSSION

Grape products, including raisins, contain high concentrations of specific natural phenolic compounds.² Polyphenols released through the indigestible carbohydrate matrix of the fruit skin bind to iron and form a nontransportable complex that cannot enter the bloodstream. It was shown that bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner.³ Thus, we suspected that consumption of raisins in larger quantities would interfere with the bioavailability of dietary iron,⁴ similar to pica syndrome. For testing of our hypothesis, we administered a lower than standard dose of iron in the absorption tests, because we were aware from our patient's history that oral iron supplementation was capable of offseting the dietary deficiencies.

CONCLUSIONS

To our knowledge, this is the first clinical case indicating that blue raisins decrease the absorption of iron from foods. Although our observation comprises a rare cause of iron-deficiency anemia, natural bioactive polyphenols may offer an adjunct dietetic treatment in patients with hereditary hemochromatosis, who experience iron overload because of an accelerated rate of intestinal iron absorption.⁵

Peter Schnuelle, MD, PhD
Alexander Mueller, MD
Wilhelm H. Schmitt, MD, PhD
Academic Postgraduate Training Practice
University Medical Centre Mannheim
Centre for Renal Disease
Weinheim, Germany

http://dx.doi.org/10.1016/j.amjmed.2013.07.032

References

- Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL. Prevalence of iron deficiency in the United States. JAMA. 1997;277:973-976.
- Williamson G, Carughi A. Polyphenol content and health benefits of raisins. Nutr Res. 2010;30:511-519.
- Ma Q, Kim EY, Lindsay EA, Han O. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells. *J Food Sci.* 2011;76:H143-H150.
- Bryant BJ, Yau YY, Arceo SM, Hopkins JA, Leitman SF. Ascertainment of iron deficiency and depletion in blood donors through screening questions for pica and restless legs syndrome. *Transfusion*. 2013;53:1637-1644.
- Fleming RE, Ponka P. Iron overload in human disease. N Engl J Med. 2012;366:348-359.