Advertisement

Disorders of oxalate metabolism

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Oxalate is a useless metabolic endproduct, formed as an unfortunate byproduct of the metabolism of glyoxylate and ascorbate. When formed it is excreted in the urine where it constitutes a hazard because of the insolubility of its calcium salt. In the majority of patients with calcium oxalate stones the urinary excretion of oxalate is normal. Reviewed herein are the acquired and genetic disorders associated with excessive oxalate excretion, in particular primary hyperoxaluria types I (glycolic aciduria) and II (glyceric aciduria). The demonstration of specific enzyme defects associated with these diseases has clarified the pathogenesis of oxalate production. Although rare, these diseases are important since they most frequently lead to early death from renal failure. Newer approaches to treatment are therefore being pursued; if successful, they might also find application in the treatment of patients with idiopathic calcium oxalate nephrolithiasis.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Archer H.E.
        • Dormer A.E.
        • Scowen E.F.
        • Watts R.W.E.
        Primary hyperoxaluria.
        Lancet. 1957; 2: 320
        • Wyngaarden J.B.
        • Elder T.D.
        Primary hyperoxaluria and oxalosis.
        in: Stanbury J.B. Wyngaarden J.B. Fredrickson D.S. The Metabolic Basis of Inherited Disease. 2nd ed. McGraw-Hill Book Co, New York1966: 189
        • Hockaday T.D.R.
        • Clayton J.E.
        • Frederick E.W.
        • Smith Jr., L.H.
        Primary hyperoxaluria.
        Medicine. 1964; 43: 315
        • Williams H.E.
        • Smith Jr., L.H.
        l-Glyceric aciduria: a new genetic variant of primary oxaluria.
        New England J. Med. 1968; 278: 233
        • Donné
        Compt. rend. Acad. Sc. 1839;
        • Wollaston W.H.
        On cystic oxide, a new species of urinary calculus.
        in: Proc. Roy. Soc. Med.100. 1810: 223
        • Lepoutre C.
        Calculs multiples chez un enfant. Infiltration du parenchyme rénal par des cristaux.
        J. Urol. 1925; 20: 424
        • Laas E.
        Oxalate-lagerungen und Sammel-röhrennekrosen in den Nieren.
        Frankfurt. Ztschr. Path. 1941; 55: 265
        • Vischer M.
        Calciumoxalatschrumpfniere mit Urämie.
        Schweiz. Ztschr. allg. Path. 1947; 10: 286
        • Daniels R.A.
        • Michels R.
        • Aisen P.
        • Goldstein G.
        Familial hyperoxaluria.
        Am. J. Med. 1960; 29: 820
        • Davis J.S.
        • Klingberg W.G.
        • Stowell R.E.
        Nephrolithiasis and nephrocalcinosis with calcium oxalate crystals in kidneys and bones.
        J. Pediat. 1950; 36: 323
        • Newns G.H.
        • Black J.A.
        A case of calcium oxalate nephrocalcinosis.
        Great Ormond St. J. 1953; 5: 40
        • Aponte G.E.
        • Fetter T.R.
        Familial idiopathic oxalate nephrocalcinosis.
        Am. J. Clin. Path. 1954; 24: 1363
        • McLaurin A.W.
        • Beisel W.R.
        • McCormick G.J.
        • Scalettar R.
        • Herman R.H.
        Primary hyperoxaluria.
        Ann. Int. Med. 1961; 55: 70
      1. Smith, L. H., Jr. Unpublished cases.

        • Antoine B.
        • Slama R.
        • Josso F.
        • de Montera H.
        • Habib R.
        • Richet G.
        La destruction du parenchyme rénal par envahissment de cristaux d'oxalates de calcium. Deux nouvelles observations d'oxalose rénale.
        Presse méd. 1960; 68: 803
        • Stauffer M.
        Oxalosis. Report of a case, with a review of the literature and discussion of the pathogenesis.
        New England J. Med. 1960; 263: 386
        • Cochran M.
        • Hodgkinson A.
        • Zarembski P.M.
        • Anderson C.K.
        Hyperoxaluria in adults.
        Brit. J. Surg. 1968; 55: 121
        • Buri J-F.
        L'oxalose.
        Helvet. paediat. acta. 1962; 17: 1
        • Weber A.L.
        Primary hyperoxaluria: roentgenographic, clinical and pathologic findings.
        Am. J. Roentgenol. 1967; 100: 155
        • Scowen E.F.
        • Stansfield A.G.
        • Watts R.W.E.
        Oxalosis and primary hyperoxaluria.
        J. Path. & Bact. 1959; 77: 195
        • Edwards D.L.
        Idiopathic familial oxalosis.
        Arch. Path. 1957; 64: 546
        • Simkó I.
        Oxalosis.
        Ann. paediat. 1957; 189: 1
        • Hughes D.T.
        The clinical and pathological background of two cases of oxalosis.
        J. Clin. Path. 1959; 12: 498
        • Hockaday T.D.R.
        • Frederick E.W.
        • Clayton J.E.
        • Smith Jr., L.H.
        Studies on primary hyperoxaluria. II. Urinary oxalate, glycolate and glyoxylate measurement by isotope dilution method.
        J. Lab. & Clin. Med. 1965; 65: 677
        • Gershoff S.N.
        • Faragalla F.F.
        • Nelson D.A.
        • Andrus S.B.
        Vitamin B6 deficiency and oxalate nephrocalcinosis in the cat.
        Am. J. Med. 1959; 27: 72
        • Faber S.R.
        • Feitler W.W.
        • Bleiler R.E.
        • Ohlson M.A.
        • Hodges R.E.
        The effects of an induced pyridoxine and pantothenic acid deficiency on excretions of oxalic and xanthurenic acids in the urine.
        Am. J. Clin. Nutrition. 1963; 12: 406
        • Elder T.D.
        • Wyngaarden J.B.
        The biosynthesis and turnover of oxalate in normal and hyperoxaluric subjects.
        J. Clin. Invest. 1960; 39: 1337
        • Ludwig G.D.
        Renal calculi associated with hyperoxaluria.
        Ann. New York Acad. Sc. 1963; 104: 621
        • Dempsey E.F.
        • Forbes A.P.
        • Melick R.A.
        • Henneman P.H.
        Urinary oxalate excretion.
        Metabolism. 1960; 9: 52
        • Williams H.E.
        • Smith Jr., L.H.
        Identification and determination of glyceric acid in human urine.
        J. Lab. & Clin. Med. 1968; 71: 495
        • Bennett B.
        • Rosenblum C.
        Calcium oxalate crystals in the myocardium in uremic patients.
        Lab. Invest. 1961; 10: 947
        • Gross S.
        Granulomatous thyroiditis with anisotropic crystalline material.
        Arch. Path. 1955; 59: 412
        • Cogan D.G.
        • Kuwabara T.
        • Silbert J.
        • Kern H.
        • McMurray V.
        • Hurlbert C.
        Calcium oxalate and calcium phosphate crystals in detached retinas.
        Arch. Ophth. 1958; 60: 366
        • Glynn L.E.
        Crystalline bodies in tunica media of middle cerebral artery.
        J. Path. & Bact. 1940; 51: 445
        • Bennington J.L.
        • Haber S.L.
        • Smith J.V.
        • Warner N.E.
        Crystals of calcium oxalate in the human kidney. Studies by means of electronmicroprobe and X-ray diffraction.
        Am. J. Clin. Path. 1964; 41: 8
        • Fanger H.
        • Esparza A.
        Crystals of calcium oxalate in the kidney in uremia.
        Am. J. Clin. Path. 1964; 41: 597
        • Zarembski P.M.
        • Hodgkinson A.
        The oxalic acid content of English diets.
        Brit. J. Nutrition. 1962; 16: 627
        • Archer H.E.
        • Dormer A.E.
        • Scowen E.F.
        • Watts R.W.E.
        Studies on the urinary excretion of oxalate by normal subjects.
        Clin. Sc. 1957; 16: 405
        • Zarembski P.M.
        • Hodgkinson A.
        The determination of oxalic acid in food.
        Analyst. 1962; 87: 698
        • Archer H.E.
        • Dormer A.E.
        • Scowen E.F.
        • Watts R.W.E.
        The aetiology of primary hyperoxaluria.
        Brit. M. J. 1958; 1: 175
        • Cattell W.R.
        • Spencer A.G.
        • Taylor G.W.
        • Watts R.W.E.
        The mechanism of the renal excretion of oxalate in the dog.
        Clin. Sc. 1962; 22: 43
        • Zarembski P.M.
        • Hodgkinson A.
        The renal clearance of oxalic acid in normal subjects and in patients with primary hyperoxaluria.
        Invest. Urol. 1963; 1: 87
      2. Williams, H. E., Morris, R. C. and Smith, L. H., Jr. To be published.

        • Merz W.
        • Maugeri S.
        Über das Vorkommen und die Bestimmung der Oxalsäure im Blut.
        Hoppe-Seyler Ztschr. physiol. chem. 1931; 201: 31
        • Barber H.H.
        • Gallimore E.J.
        The metabolism of oxalic acid in the animal body.
        Biochem. J. 1940; 34: 144
        • Crawhall J.C.
        • Watts R.W.E.
        The oxalate content of human plasma.
        Clin. Sc. 1961; 20: 357
        • Zarembski P.M.
        • Hodgkinson A.
        Fluorimetric determination of oxalic acid in blood and other biological material.
        Biochem. J. 1965; 96: 717
        • Farragalla F.F.
        • Gershoff S.N.
        Occurrence of C14-oxalate in rat urine after administration of C14-tryptophane.
        in: Proc. Soc. Exper. Biol. & Med.114. 1963: 602
        • Curtin C.O.
        • King C.G.
        The metabolism of ascorbic acid-1-14C and oxalic acid-14C in the rat.
        J. Biol. Chem. 1955; 216: 539
        • Banay M.
        • Dimant E.
        On the metabolism of l-ascorbic acid in the scorbutic guinea-pig.
        Biochim. et biophys. acta. 1962; 59: 313
        • Abt A.F.
        • von Schuching S.
        • Enns T.
        l-Ascorbic-1-C14 acid catabolism in the rhesus monkey.
        Nature. 1962; 193: 1178
        • Hellman L.
        • Burns J.J.
        Metabolism of l ascorbic acid 1-14C in man.
        J. Biol. Chem. 1958; 230: 923
        • Baker E.M.
        • Saari J.C.
        • Tolbert B.M.
        Ascorbic acid metabolism in man.
        Am. J. Clin. Nutrition. 1966; 19: 371
        • Lambden M.P.
        • Chrystowski G.A.
        Urinary oxalate excretion by man following ascorbic acid ingestion.
        in: Proc. Soc. Exper. Biol. & Med.85. 1954: 190
        • Atkins G.L.
        • Dean B.M.
        • Griffin W.J.
        • Scowen E.F.
        • Watts R.W.E.
        Quantitative aspects of ascorbic acid matabolism in patients with primary hyperoxaluria.
        Clin. Sc. 1965; 29: 305
        • Buckle R.M.
        The glyoxylic acid content of human blood and its relationship to thiamine deficiency.
        Clin. Sc. 1963; 25: 207
        • Madsen N.B.
        Test for isocitritase and malate synthetase in animal tissues.
        Biochim. et biophys. acta. 1958; 27: 199
        • Ratner S.
        • Nocito V.
        • Green D.E.
        Glycine oxidase.
        J. Biol. Chem. 1944; 152: 119
        • Cammarata P.S.
        • Cohen P.P.
        The scope of the transamination reaction in animal tissues.
        J. Biol. Chem. 1950; 187: 439
        • Clagett C.O.
        • Tolbert N.E.
        • Burris R.H.
        Oxidation of α-hydroxy acids by enzymes from plants.
        J. Biol. Chem. 1949; 178: 977
        • Kun E.
        • Dechary J.M.
        • Pitot H.C.
        The oxidation of glycolic acid by a liver enzyme.
        J. Biol. Chem. 1954; 210: 269
        • Richardson K.E.
        • Tolbert N.E.
        Oxidation of glyoxylic acid to oxalic acid by glycolic acid oxidase.
        J. Biol. Chem. 1961; 236: 1280
        • Dekker E.E.
        • Maitra U.
        Conversion of γ-hydroxyglutamate to glyoxylate and alanine; purification and properties of the enzyme system.
        J. Biol. Chem. 1962; 237: 2218
        • Hockaday T.D.R.
        • Clayton J.E.
        • Smith Jr., L.H.
        The metabolic error in primary hyperoxaluria.
        Arch. Dis. Childhood. 1965; 40: 485
        • Payes B.
        • Laties G.G.
        The enzymatic conversion of γ-hydroxy-α-ketoglutarate to malate: a postulated step in the cyclic oxidation of glyoxylate.
        Biochem. & Biophys. Res. Commun. 1963; 13: 179
        • Engelman K.
        • Watts R.W.E.
        • Klinenberg J.R.
        • Sjoerdsma A.
        • Seegmiller J.E.
        Clinical, physiological and biochemical studies of a patient with xanthinuria and pheochromocytoma.
        Am. J. Med. 1964; 37: 839
        • Booth V.H.
        The specificity of xanthine oxidase.
        Biochem. J. 1938; 32: 494
        • Gibbs D.A.
        • Watts R.W.E.
        An investigation of the possible role of xanthine oxidase in the oxidation of glyoxylate to oxalate.
        Clin. Sc. 1966; 31: 285
        • Krakow G.
        • Vennesland B.
        The stereospecificity of glyoxylate reduction in leaves.
        Biochem. Ztschr. 1963; 338: 31
        • Sawaki S.
        • Hattori N.
        • Yamada K.
        Reduction of nicotinamide adenine dinucleotide by glyoxylate in animal organs.
        J. Vitaminol. 1966; 12: 303
        • Banner M.R.
        • Rosalki S.B.
        Glyoxylate as a substrate for lactate dehydrogenase.
        Nature. 1967; 213: 726
        • Kornberg H.L.
        • Elsden S.R.
        The metabolism of 2-carbon compounds by microorganisms.
        in: Nord F.F. Advances in Enzymology. Interscience Publishers, Inc, New York1961: 401
        • Ganguli N.C.
        • Chakraverty K.
        Evidence for malic synthetase in animal tissues.
        J. Am. Chem. Soc. 1961; 83: 2581
        • Krakow G.
        • Barkulis S.S.
        • Hayashi J.A.
        Glyoxylic acid carboligase: an enzyme present in glycolate-grown Escherichia coli.
        J. Bact. 1961; 81: 509
        • Valentine R.C.
        • Wolfe R.S.
        Phosphate-dependent degradation of urea.
        Nature. 1961; 191: 925
        • Kornberg H.L.
        • Morris J.G.
        β-Hydroxyaspartate pathway: a new route for biosynthesis from glyoxylate.
        Nature. 1963; 197: 456
        • Rabin R.
        • Reeves H.C.
        • Wegener W.S.
        • Megraw R.E.
        • Ajl S.J.
        Glyoxylate in fatty-acid metabolism.
        Science. 1965; 150: 1548
        • Saz H.J.
        • Hillary E.P.
        The formation of glyoxylate and succinate from tricarboxylic acids by Pseudomonas aeruginosa.
        Biochem. J. 1956; 62: 563
        • Zelitch I.
        Oxidation and reduction of glycolic and glyoxylic acids in plants. II. Glyoxylic acid reductase.
        J. Biol. Chem. 1953; 201: 719
        • Zelitch I.
        • Gotto A.M.
        Properties of a new glyoxylate reductase from leaves.
        Biochem. J. 1962; 84: 541
        • Nakada H.I.
        • Weinhouse S.
        Non-enzymatic transamination with glyoxylic acid and various amino-acids.
        J. Biol. Chem. 1953; 204: 831
        • Thompson J.S.
        • Richardson K.E.
        Isolation and characterization of a glutamate-glycine transaminase from human liver.
        Arch. Biochem. 1966; 117: 599
        • Williams H.E.
        • Wilson K.M.
        • Smith Jr., L.H.
        Studies on primary hyperoxaluria. III. Transamination reactions of glyoxylate in human tissue preparations.
        J. Lab. & Clin. Med. 1967; 70: 494
        • Nakada H.I.
        • Sund L.P.
        Glyoxylic acid oxidation by rat liver.
        J. Biol. Chem. 1958; 233: 8
        • Crawhall J.C.
        • Watts R.W.E.
        The metabolism of glyoxylate by human and rat liver mitochondria.
        Biochem. J. 1962; 85: 163
        • Kawasaki H.
        • Okuyama M.
        • Kikuchi G.
        α-Ketoglutarate-dependent oxidation of glyoxylic acid in rat mitochondria.
        J. Biochem. 1966; 59: 419
        • Stewart P.R.
        • Quayle J.R.
        The synergistic decarboxylation of glyoxylate and 2-oxoglutarate by an enzyme from mammalian liver.
        Biochem. J. 1966; 98: 43p
        • Koch J.
        • Stokstad E.L.R.
        • Williams H.E.
        • Smith Jr., L.H.
        Deficiency of 2-oxoglutarate: glyoxylate carboligase activity in primary hyperoxaluria.
        in: Proc. Nat. Acad. Sc.57. 1967: 1123
      3. Koch, J. and Stokstad, E. L. R. Personal communication.

        • Frederick E.W.
        • Rabkin M.T.
        • Ritchie Jr., R.H.
        • Smith Jr., L.H.
        Studies on primary hyperoxaluria. I. In vivo demonstration of a defect in glyoxylate metabolism.
        New England J. Med. 1963; 269: 821
        • Crawhall J.C.
        • Scowen E.F.
        • Watts R.W.E.
        Conversion of glycine to oxalate in primary hyperoxaluria.
        Lancet. 1959; 2: 806
        • Crawhall J.C.
        • Watts R.W.E.
        The metabolism of [1-14C]-glyoxylate by the liver mitochondria of patients with primary hyperoxaluria and non-hyperoxaluric subjects.
        Clin Sc. 1962; 23: 163
        • Gibbs D.A.
        • Thompson C.J.
        • Watts R.W.E.
        Plasma and urinary amino acids in children with primary hyperoxaluria and in normal children.
        Arch. Dis. Childhood. 1967; 42: 619
        • Dean B.M.
        • Griffin W.J.
        • Watts R.W.E.
        Primary hyperoxaluria.
        Lancet. 1966; 1: 406
        • Dean B.M.
        • Watts R.W.E.
        • Westwick W.J.
        Metabolism of [1-14C] glyoxylate, [1-14C] glycollate, [1-14C] glycine and [2-14C] glycine by homogenates of kidney and liver tissue from hyperoxaluric and control subjects.
        Biochem. J. 1967; 105: 701
        • Fisher V.
        • Watts R.W.E.
        The metabolism of glyoxylate in blood from normal subjects and patients with primary hyperoxaluria.
        Clin. Sc. 1968; 34: 97
        • Dawkins P.D.
        • Dickens F.
        Oxidation of d- and l-glycerate by rat liver.
        Biochem. J. 1965; 94: 353
        • Fallon H.J.
        • Hackney E.J.
        • Byrne W.L.
        Serine biosynthesis in rat liver: regulation of enzyme concentration by dietary factors.
        J. Biol. Chem. 1966; 241: 4157
        • Willis J.E.
        • Sallach H.J.
        Evidence for mammalian d-glyceric dehydrogenase.
        J. Biol. Chem. 1962; 237: 910
        • Lamprecht W.
        • Heinz F.
        • Diamantstein T.
        Phosphorylierung von d-glycerinsäure zu 2-phospho-d-glycerinsäure mit Glyceratkinase in Leber, II1.
        Ztschr. Physiol. Chem. 1962; 328: 204
        • Sallach H.J.
        d-Glycerate dehydrogenase of liver and spinach.
        in: Methods in Enzymology. vol. 9. Academic Press, Inc, New York1966: 221 (chap. 45)
        • Walsh D.A.
        • Sallach H.J.
        Comparative studies on pathways for serine biosynthesis in animal tissues.
        J. Biol. Chem. 1966; 241: 4068
        • de Toni G.
        • Durand P.
        Observations on two opposite clinical situations: renal acidosis and alkalosis.
        Ann. paediat. 1959; 193: 257
        • Lagrue G.
        • Laudat M.H.
        • Meyer P.
        • Sapir M.
        • Milliez P.
        Oxalose familiale avec acidose hyperchlorémique secondaire.
        in: Semaine hôp. Paris.35. 1959: 2023
        • Öigaard H.
        • Sóderhjelm L.
        • Hóglund N-J.
        • Werner I.
        Familial oxalosis. II.
        Acta Soc. med. upsalien. 1963; 68: 55
        • Jeghers H.
        • Murphy R.
        Practical aspects of oxalate metabolism.
        New England J. Med. 1945; 233: 208
        • Kalliala H.
        • Kauste O.
        Ingestion of rhubarb leaves as a cause of oxalic acid poisoning.
        Ann. paediat. 1964; 10: 228
        • Zarembski P.M.
        • Hodgkinson A.
        Plasma oxalic acid and calcium levels in oxalate poisoning.
        J. Clin. Path. 1967; 20: 283
        • Silbergeld S.
        • Carter H.E.
        The toxicity of glycolic acid in male and female rats.
        Arch. Biochem. 1959; 84: 183
        • Pohl J.
        Ueber den oxydativen Abbau der Fettkörper im thierischen Organismus.
        Arch. exper. Path. u. Pharmkol. 1896; 37: 413
        • Lyon E.S.
        • Borden T.A.
        • Vermeulen C.W.
        Experimental oxalate lithiasis produced with ethylene glycol.
        Invest. Urol. 1966; 4: 143
        • Richardson K.E.
        Endogenous oxalate synthesis in male and female rats.
        Toxicol. & Appl. Pharmacol. 1965; 7: 507
        • Friedman E.A.
        • Greenberg J.B.
        • Merrill J.P.
        • Dammin G.J.
        Consequences of ethylene glycol poisoning.
        Am. J. Med. 1962; 32: 891
        • Weil C.S.
        • Carpenter C.P.
        • Smyth Jr., H.F.
        Urinary bladder calculus and tumor response following either repeated feeding of diethylene glycol or calcium oxalate stone implantation.
        Indust. Med. & Surg. 1967; 36: 55
        • Liang C.
        Studies on experimental thiamine deficiency. Trends of ketoacid formation and detection of glyoxylic acid.
        Biochem. J. 1962; 82: 429
        • Gershoff S.N.
        Vitamin B6 and oxalate metabolism.
        Vitamins & Hormones. 1964; 22: 581
        • Runyan T.J.
        • Gershoff S.N.
        The effect of vitamin B6 deficiency in rats on the metabolism of oxalic acid precursors.
        J. Biol. Chem. 1965; 240: 1889
        • Scriver C.R.
        • Hutchinson J.H.
        The vitamin B6 deficiency syndrome in human infancy: biochemical and clinical observations.
        Pediatrics. 1963; 31: 240
        • Gerritsen T.
        • Kaveggia E.
        • Waisman H.A.
        A new type of idiopathic hyperglycinemia with hypooxaluria.
        Pediatrics. 1965; 36: 882
        • Smith Jr., L.H.
        • Williams H.E.
        Treatment of primary hyperoxaluria.
        Mod. Treat. 1967; 4: 522
        • Swartz D.
        • Israels S.
        Primary hyperoxaluria.
        J. Urol. 1963; 90: 94
        • Neims A.H.
        • Hellerman L.
        Specificity of the D-amino acid oxidase in relation to glycine oxidase activity.
        J. Biol. Chem. 1962; 237: 976
        • Greengard O.
        • Gordon M.
        The cofactormediated regulation of apoenzyme levels in animal tissues. I. The pyridoxine-induced rise of rat liver tyrosine transaminase level in vivo.
        J. Biol. Chem. 1963; 238: 3708
        • Gibbs D.A.
        • Watts R.W.E.
        Biochemical studies on the treatment of primary hyperoxaluria.
        Arch. Dis. Childhood. 1967; 42: 505
        • Solomons C.C.
        • Goodman S.I.
        • Riley C.M.
        Calcium carbimide in the treatment of primary hyperoxaluria.
        New England J. Med. 1967; 276: 207
        • Zarembski P.M.
        • Hodgkinson A.
        • Cochran M.
        Treatment of primary hyperoxaluria with calcium carbimide.
        New England J. Med. 1967; 277: 1000
        • Solomons C.C.
        • Goodman S.I.
        • Riley C.M.
        Treatment of hyperoxaluria.
        New England J. Med. 1967; 277: 1425
        • Gibbs D.A.
        • Watts R.W.E.
        Oxalate formation from glyoxylate in primary hyperoxaluria: studies on liver tissue.
        Clin. Sc. 1967; 32: 351
        • Frederick E.W.
        • Rabkin M.T.
        • Smith Jr., L.H.
        Primary hyperoxaluria: a defect in glyoxylate metabolism.
        J. Clin. Invest. 1962; 41: 1358
      4. Bauer, R., Williams, H. E. and Smith, L. H., Jr. To be published.

        • Lyon E.S.
        • Borden T.A.
        • Ellis J.E.
        • Vermeulen C.W.
        Invest. Urol. 1966; 4: 133
        • Gershoff S.N.
        • Prien E.L.
        Effect of daily MgO and vitamin B6 administration to patients with recurrent oxalate kidney stones.
        Am. J. Clin. Nutrition. 1967; 20: 393
        • Howard J.E.
        • Thomas Jr., W.C.
        Control of crystallization in urine.
        Am. J. Med. 1968; 45: 693
        • Thomas Jr., W.C.
        • Miller Jr., G.H.
        Inorganic phosphates in the treatment of renal calculi.
        Mod. Treat. 1967; 4: 494